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M. Giraudet and F. Lucas [3] introduced and investigated the notion of
a half linearly ordered group (cf. also D.R. Ton [14], J. Jakubik [6], [7]).
J. Jakubik [8] defined and studied the notion of a half linearly cyclically
ordered group (lc-group) generalizing the notion of a half linearly ordered
group.

The author [1] investigated the Cantor extension of an abelian lc-group.
We remark that the Cantor extension of lattice ordered groups was studied
by C.J. Everett [2].

Let G be a half lc-group such that its increasing part is abelian and its
decreasing part is nonempty (thus G fails to be an le-group). The notions of
a convergent sequence and a fundamental sequence are defined in a natural
way. If every fundamental sequence in G is convergent in G, then G is said
to be C-complete.

In the present paper necessary and sufficient conditions are found under
which G is C-complete. Further, we define the notion of a Cantor exten-
sion and we prove that every half lc-group has a Cantor extension which is
uniquely determined up to isomorphisms leaving all elements of G fixed.
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1. [F-CYCLICALLY ORDERED SETS AND GROUPS

We recall the definitions and some results concerning [-cyclically ordered
sets (cf. Novdk and Novotny [10], Novak [9], Quilot [11]) and I-cyclically
ordered groups (cf. Rieger [12], Swierczkowski [13], Jakubik and Pringerova

[4], [5)-

Definition 1.1. Let M be a nonempty set and 71" a ternary relation on M
such that the following conditions are satisfied:

(I) if [z,y,2] €T then [y,x,z] ¢ T.
(II) [z,y,z] € T implies [y,z,x] €T.
(ITT) [z,y,z] € T,ly,u,z] € T imply [z,u,z] € T.

Then T is said to be a cyclic order on M and (M, T) is called a cyclically
ordered set.
Let T be a cyclic order on M satisfying the condition:

(IV) ifz,y,z € M,z # y # z # x, then either [z,y,2] € T or [z,y,z] € T.

Then T is said to be an [-cyclic order on M and (M, T) is called an [-
cyclically ordered set.

Several terms are used in papers for the term [-cyclic order. For instance
"l-cyclic order” is called "linear cyclic order” in [9], ” complete cyclic order”
in [11] and simply ”cyclic order” in [12] and [13].

Definition 1.2. Let (H;+) be a group and (H;T) an [-cyclically ordered
set such that the following condition is fulfilled:

(V) if [z,y,2] € T,u,v € H, then [u+z+v,u+y+v, u+z+v]€T.

Then (H;+,T) is said to be an l-cyclically ordered group or lc-group (linearly
cyclically ordered group).

We often write H or (H;T) instead of (H;+,T).
Every subgroup of an [c-group is considered as an lc-group under the
induced I-cyclic order.

Example 1.3. Let (L; <) be a linearly ordered group z,y,z € L. Define
the ternary relation 77, on L by putting



CANTOR EXTENSION OF A HALF LINEARLY CYCLICALLY ... 33

[,y,2] eTrifr<y<zory<z<zorz<z<y.

Then (L;T7) is an le-group. 717 is called the l-cyclic order generated by
the linear order < on L. Hence every linearly ordered group is an lc-group
(under the [-cyclic order generated by its linear order).

Example 1.4. Let K be the group of all reals k£ such that 0 < k < 1 with
the group operation defined as the addition mod 1. Consider the natural
linear order < and the ternary relation 77 on K defined in the same way as
Ty, in 1.3. Then (K;T1) is an le-group.
Define the ternary relation T' on the direct product L x K of groups

L and K as follows: for elements uj,us,us € L X K, u; = (x,k1), uz =
(y, k2), ug = (2, k3) we put [u1, ug, us] € T if some of the following conditions
is valid:

(i) [k1, ko, k3] € T1;
(ii) k1 =k # ks and x < y;
(ili) ko =ks #k1 and y < z;

) ks =k # ko and z < z;

) k1 = ko = k3 and [x,y,z] eTr.

(iv
(v

Then (L x K;T) is an lc-group which will be denoted by L ® K.
The notion of an isomorphism of lc-groups is defined in a natural way.

Theorem 1.5 (gwierczkowski [13]). Let H be an lc-group. Then there exists
a linearly ordered group L such that H is isomorphic to a subgroup of L& K.

Assume that (H;T) is an lc-group. By 1.5, there exists an isomorphism
fof Hinto L&K. Let H, be the set of all h € H such that there exists x € L
with the property f(h) = (z,0). Then H, is a subgroup of H, H, = {0} or
H, # {0}. Let H, # {0}, h € H,, h # 0. There exists z € L such that
f(h) = (x,0). H, turns out to be a linearly ordered grup if we put h > 0
if « > 0. The l-cyclic order Ty, on H, coincides with the [l-cyclic order
induced by T.

2. CANTOR EXTENSION OF AN ABELIAN [c-GROUP

Let (H;T) be an abelian lc-group. A construction of a Cantor extension
of H will be described (cf. [1]) and some results from [1] will be presented.
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Definition 2.1. Let (z,,) be a sequence in H and x € H.
a) We say that (z,,) converges to = (or x is a limit of (z,) ) in H and we
write z, — x (or limz, = x)
(i) if card H = 2 and there exists n, € N such that z,, = z for each
n € N,n > n,,
or
(ii) if card H > 2 and for each ¢ € H,e # 0 with the property

[—,0,e] € T' there exists n, € N such that [—e,z, —x,c] € T for
each n € N,n > n,.
b) The sequence (z,,) is called fundamental in H if for each € € H,e # 0
with the property [—¢,0,e] € T there exists n, € N such that
[—&,Zp — T, €] € T for each m,n € N,m,n > n,.

c) By a zero sequence we understand a sequence (x,) such that x,, — 0.

d) H iscalled C-complete if each fundamental sequence in H is convergent
in H.

The set of all fundamental (zero) sequences in H will be denoted by F(Eyr).

Definition 2.2. Let H; be an abelian lc-group satisfying the following
conditions:

(a) Hj is C-complete.

(b) H is a subgroup of Hj.

(c) Every element of H; is a limit of some fundamental sequence in H.
(

d) Let (x,) be a sequence in H such that z,, — 0 in H. Then z, — 0
in Hl.

Then H,; is said to be a Cantor extension of H.

Now we consider two cases: Hy # {0} and Hy = {0}.

1) Assume that H, # {0}. Let (z,),(yn) € Fg. Under the natural
definition of the operation + on Fpy, (z,,) + (yn) = (n + yn), F is a group
and Fp is a subgroup of Fy. We form the factor group H* = Fy/Eq.
Symbol (z,,)* will denote the coset of H* containing the sequence (z,,) € Fy.

Suppose that (z,)*, (yn)*, (2n)* are mutually distinct elements of H*.
Let T* be the set of all triples [(zy)*, (yn)*, (zn)*] of elements of H* such
that there exists n, € N with [z, yn, 2,] € T for each n € N,n > n,. Then
(H*,T*) is an le-group.
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Let ¢ be the mapping from H into H* defined by ¢(x) = (z,z,...)* for each
x € H. Then ¢ is an isomorphism of the lc-group H into H*. We identify z
and ¢(z) for each x € H. Then H is a subgroup of H* and H* is a Cantor
extension of H.

If we denote (z,)* = X and (zn,Zn,...)" = X, then we have (cf. [1],
the proof of Lemma 3.12)

(A) X, — X in H*.

Lemma 2.3 ([1], Lemma 3.9). H is C-complete if and only if H, is C-
complete.

2) Now assume that H, = {0}. Then H can be considered as a subgroup
of K.

Lemma 2.4 ([1], Lemma 4.2). If H is a finite subgroup of K, then H is
C-complete.

Lemma 2.5 ([1], Lemma 4.5). If H is an infinite subgroup of K, then K
is a Cantor extension of H.

The following result is valid in both cases 1) and 2).

Theorem 2.6 ([1], Theorem 4.9). Let H be an abelian lc-group. Then
(i) there exists a Cantor extension of H,

(ii) if Hy and Hy are Cantor extensions of H, then there exists an isomor-
phism ® from the lc-group Hy onto Hy such that ®(x) = = for each
r e H.

3. HALF [lc-GROUPS

The notion of a half lc-group was introduced by Jakubik [8]. Now we recall
the definitions and results that will be applied in the next sections.

Let (G;+,T) be a system such that (G;+) is a group and (G;T) is a
cyclically ordered set. Assume that x,y,z € G. Denote

Gl={ueG:[z,y,2] €T = [u+z,ut+y,u+t+zl €T},
Gl={ueG:[z,y,z| €T = [u+z,u+y,u+zx] €T}



36 S. CERNAK

Definition 3.1. Let (G;+,T) be as above. Assume that the following
conditions are fulfilled:

The system T is nonempty.

G=GTUG].

)
2) If [x,y,2] € T, then [z + u,y +u,z 4+ u] € T for each u € G.
)
) If [x,y, z] € T, then either {z,y,2z} CGT or {z,y,2} &£ G|.
Then (G;+,T) is said to be a half cyclically ordered group.

Let (G;+,T) be a half cyclically ordered group. The definition implies
that G'1 is a cyclically ordered group. If G 7 is an lc-group then (G;+,T) is
called a half lc-group (half linearly cyclically ordered group).

There are elements z,y,z € G with [z,y,z] € T. This is an immediate
consequence of (1).

Again, we often write G or (G;T) instead of (G;+,T).

In the next, let G be a half lc-group. G T (G |) is called the increasing
(decreasing, resp.) part of G.

A subgroup G’ of G is said to be a half lc-subgroup of G if the induced
I-cyclic order on G’ is nonempty.

Each lc-group G with card G > 3 is a half le-group (with G 1= G and
G |= 0). Every linearly ordered group is an lc-group. Hence every half
linearly ordered group (for the definition cf. [3]) is a half lc-group.

The notion of an isomorphism of half lc-groups is defined in a natural
way.

From the definition 3.1 it follows (cf. [8]):

(i) fz,ye G|, thenx+y e GT;
(i) fzeGl,yeG|,thenz+ye G| andy+x € G].

4. CANTOR EXTENSION OF A HALF [c-GROUP

In what follows, we assume that (G,T) is a half lc-group such that G 71 is
abelian and G |# (). Hence G is neither abelian group nor lc-group.

We will use the notation G1= H and G |= H'.
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Definition 4.1. Let (z,,) be a sequence in G and = € G.

a) We say that (x,) converges to x (or x is a limit of (x,)) in G and we
write x, — x (or limz,, = x) if for each € € G, # 0 with the property
[—€,0,e] € T there exists n, € N such that [—¢,z, — x,¢] € T and
[—e,—x + xp,¢| € T for each n € N,n > n,.

b) The sequence (x,) is said to be fundamental if for each € € G,e # 0
with [—¢,0,¢e] € T there exists n, € N such that [—¢, 2, — Ty, el € T
and [—&, =&y, + xn, €] € T for each m,n € N,m,n > n,.

c) If z, — 0in G, then (z,,) is called a zero sequence in G.

d) G is said to be C-complete if every fundamental sequence in G is
convergent in G.

Definition 4.2. Let Gy be a half lc-group with the following properties:
(o) Gy is C-complete;

(8) G is a half lc-subgroup of Gy;

(7) Every element of G is a limit of some fundamental sequence in G;
(

0) Let (z5) be a sequence in G such that x,, — 0 in G. Then z,, — 0 in
G1.

Then (G is said to be a Cantor extension of G.

We prove that G has a Cantor extension and this is uniquely determined
up to isomorphisms leaving all elements of G fixed.

Denote by F'(E) the set of all fundamental (zero) sequences in G. Sym-
bols Fy and EFx have the same meaning as in the section 2.

The following two lemmas are easy to prove.

Lemma 4.3. Let (x,) be a sequence in G. Then x, — x in G if and only
ife,—x—0and —x+x, —0inG. [ |

For a fixed element n, € N and a sequence (x,) in G we apply the
notation x, = Tp,4,_1 for each n € N.
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Lemma 4.4. Let (x,) be a sequence in G.

(i) (zn) € E if and only if there exists n, € N such that (z%) is a sequence
in H and (%) € Eg.

(ii) Let x € G such that x,, — x in G. Then there exists n, € N such that

either (z2) is a sequence in H (and then x € H) or (x5) is a sequence

in H' (and then x € H').

(iii) Let (zn) € F. Then there exists n, € N such that either (z9) is a

n
sequence in H (and then (z2) € Fy) or (x2) is a sequence in H'.

Let (z,,) be a sequence in H,x € H. Then

(iv) xn — x in H if and only if x, — x in G. |

Let € € G,e # 0. If [-¢,0,¢e] € T, then € € H. Thus we have:

Lemma 4.5. Fg C FE and Fyg C F. [ |

Let a be a fixed element of H'. Every element of H' can be expressed
in the form a + z for some x € H.

Lemma 4.6. Let (zy,) be a sequence in H,x € H. Then
(i) xp — 2 in H if and only ifa+ 2, — a+ 2z in G.
(ii) xn — x in H if and only ifa+x, +a —a+2x+a in H.

(iii) (zn) € Fg if and only if some of the following conditions is satisfied
(a+xn) € F,(a+ay+a) € Fy,(—a+z, +a) € Fy.

Proof. (i) and (ii) are easy to verification.

(iii): Let (x,) € Fy. We intend to show that (a + z,,) € F. Assume
that e € G,e #0,[—¢,0,¢] € T. Then ¢ € H and so —a —e+a € H. Since
(xn) € Fg,[-a+¢e+a,0,—a — e + a] € T implies that there exists n, € N
such that [-a+¢e+a,x, — 2y, —a—e+a] € T for each m,n € N,m,n = n,.
Therefore [—¢,a + x,, — (a + T), €] € T. From [—&, —xy, + zp,e] € T it
follows that [—e, —(a+xp) +a+xy,, €] € T. We conclude that (a+z,) € F.

The converse and remaining cases are similar. [ ]
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Lemma 4.7. G is C-complete if and only if H is C-complete.

Proof. Let G be C-complete and let (z5,) € Fy. In view of Lemma 4.5,
we get (z,) € F. Hence there exists x € G with z,, — = in G. Applying
Lemma 4.4 (ii) and Lemma 4.4 (iv), we obtain x € H and x, — = in H.
Hence H is C-complete.

Let H be C-complete and let (x,,) € F. From Lemma 4.4 (iii), we infer
that there exists n, € N such that either (22) € Fy or (%) € H'. Assume
that (z9) € Fy. Then 22 — x in H. With respect to Lemma 4.4 (iv),
x? — x in G. This yields that z,, — = in G. Assume that (22) € H'. There
exists (h?) € H with 2 = a + h? for each n € N. Since (a + hS) € F,
Lemma 4.6 (iii) implies that (h?) € Fy. Hence, h9 — h in H and by Lemma
4.6 (i) a+ hS — a+ h in G. We conclude now that =, — a + h in G and
the proof is complete. [

The following result is an immediate consequence of Lemmas 4.6 and 4.7.

Lemma 4.8. Let G be a subgroup of a half lc-group G1. Then G1 is a
Cantor extension of G if and only if G1 T is a Cantor extension of H. ®

Investigating a Cantor extension of GG, two cases are distinguished: H, #
{0} and H, = {0} (H, is as in the section 2).

5. THE CASE H, # {0}

In the whole section we suppose that H, # {0}. Since H, is infinite, G is
infinite as well.
We form the sets

®) a+ H* = {a+ (zn)" : (zn)* € H*Y,
Cn(G) = H*U (a+ H*).

Assume that (z,,) € Fr. With respect to Lemma 4.6 (iii), we get (a +
Zn+a) € Fg and (—a+ x, +a) € Fy.

We intend to define a group operation + and a ternary relation 7" on
Crh(G). Let (xn)*, (yn)*, (zn)* € H*.

The operation + on Cj(G) is defined to coincide with the operation +
on H* defined in the section 2, i.e., we put

(xn)* + (yn)* = (:L'n + yn)*
Further, we put
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(a+ (zn)") + (a4 (yn)") = (a+an +a+yn)",
(@n)" +(a+ (yn)*) =a+ (—a+azn+a+yn),
(a+ (@n)") + (Yn)" = a+ (zn +yn)"

We define the ternary relation 7" on C},(G) in such a way that 7" coincides
with 7" on H*.
Further, we put

[a+ (2n)*s at(ya)*, at () € T"if [(20)", ()", (20)*] € T".

If p,g and r are distinct elements of Cj,(G) such that [p,q,r] € T", then
either {p7qar} - H* or {p7q7r} c a-+ H*.

Lemma 5.1. (C,(G);+) is a group.

Proof. First, we verify that the operation + is associative. Only three

cases are considered. The remaining cases are similar.

((a+(zn)") + (a4 (yn)*)) + (a+ (z0)") = (a+ zn+a+yn)" + (a+ (2)") =
+(—a+a+axp+a+ty,+a+z)" =a+ (xpn+a+y,+a+z,)",

(a+(@n)") +((a+(yn)") +(a+(20)")) = (a+(27,)) + (a+ynt+atz,)" =
a+ (zn+a+y, +a+zp)*.

Hence,

(0 (2n))+ (a+ ()"
((a+ (20)") + (a+ ()
Ynt2n)", (a+ (27) + (
(a+xn+a+yn+2)".

Thus, (a-+(@)*)+(a+ (5n)))+ (20)" = (@ (@) ")+ ((a+ (ga) )+ (z0)").
((@n)* + (yn)*) + (a4 (20)") = (xn+yn)*+(a (2n)") = a+(—a+zn+yn+
a+zn)* (zn)" + ((yn)* + (a+ (2)7)) = (2, + (a+ (—a+yn ta+2,)") =

+(—a+zpnt+a—a+y, +a+z,)" —a+( a+Tn+ypt+atzm)

Therefore, ()" + (ya)") + (@ + (2)") = (@) + ((gn)" + (@ -+ (20)"))

Now, we show that every element of Cj,(G) has an inverse in Cj(G). It
suffices to consider elements of a + H*. Assume that a + (z,)* € a + H*.
Then a+ (—a—z, —a)* € a+ H* and it is the inverse to a+ (z,,)* in Cp(G).

|

) +(at+2,)") = (at(zn)")+((a+(yn)") +(a+(2n)")).
N+ (20)* = (a+xn+a+yn)* +(22)" = (a+x,+a+
(a+(Yn)") + (2)%) = (a+ (20)") + (a+ (yn + 20)") =

Lemma 5.2. Let (z,,)%, (yn)*, (zn)* € H*. Then [(zn)*, (yn)*, (zn)*] € T*
if and only if some of the following conditions is satisfied:
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(i) [(ma+2zn+a), (-a+yn+a), (-atz,+a)]eTr,

(i) [(a+42zp+a)", (a+yn+a)', (a+z, +a)] T

Proof. (i): Assume that [(,)*, (yn)*, (2n)*] € T*. Hence there exists
ne € N such that [z,,yn, 2,] € T for each n € N,n > n,. This yields that
[—a+zn+a,—a+yn+a, —a+z,+a] € T for eachn € N,n > n,. According
to Lemma 4.6 (iii), we have (—a+ 2, +a), (—a+yn+a),(—a+x,+a) € Fy.
We conclude that [(—a + z,, + a)*, (—a + yn + a)*, (—a + x, + a)*] € T*.
The converse and (ii) are similar. |

Lemma 5.3. Let (z,)*, (yn)*, (zn)*, (un)* € H*.

(1) If ()", (yn)™, 2)*] € T, then [(zn)" + (un)*, (Yn)* + (un)”, (2)"
(un)*] € T and [(zn)" + (a + (un)), (Yn)" + (@ + (un)*), (2n)"
(a+ (up)*)] € Th,

(i) If[a+ (zn)*s a+ ()", a+ ()] € T, then [(a+ (zn)*) + (un)",
(a+(yn)*)+(u ) , (a+(2n)")+(un)*] € T" and [(a+(wn)*)+(a+(un)*),
(@+ (yn)") + (@ + (un)"), (a+ (20)") + (a + (un)")] € T

+
+

Proof. (i): Assume that [(z,,)*, (yn)*, (2n)*] € T*. The first part of the
assertion follows from the fact that H* is an lc-group. Now, we prove the
second part. From Lemma 5.2 (i), we infer that [(—a+ 2z, +a)*, (—a+yn +
a)*, (—a+z,+a)] €T*. Then [(—a+ z, +a)" + (un)*, (—a+yn+a) +
(un)*, (ma+xn+a)* + (up)*) € T*, [(—a+2n +a+uy)*, (—a+y,+a+
up)*, (—a+x,+a+uy)*] € T*. Hence [a+ (—a+zp+a+uy)*, a+(—a+
Yntatun)*, at(—a+zp+atuy)] € T e, [(20)* +(a+ (un)*), (yn)*+
(a+ (un)*), (zn)* + (a+ (un)*) € T".

The proof of (ii) is analogous. |

Lemma 5.4. Let (x,)*, (yn)*, (2n)*, (un)* € H*.

() If [(@n)", (yn)™; (20)*] € T, then [(un)* + (n)”, (un)™ + (Yn)", (un)™ +
(zn)"] € T and [(a + (un)*) + (20)",; (@ + (un)") + (yn)*, (a + (un)*) +
(z,,)*] € T".

(it) If [a+(zn)*, at (yn)*, at(zn)*] € T, then [(un)*+(a+(xn)*), (un)*+
(a4 (yn)*), (un)*+ (a4 (20)*)] € T" and [(a+ (un)*) + (a+(2n)*), (a+
(un)*) + (a+ (yn)*), (@ + (un)*) + (a + (zn)*)] € T™.
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Proof. (i) Assume that [(z,)*, (yn)*, (2n)*] € T*. The first assertion holds
because of the fact that H* is an lc-group. Now, we prove the second
assertion. The assumption implies that [(un)* 4 (xn)*, (un)* + (Yn)*, (un)*+
(2n)*] € T* and so [(un + zp)*, (un + yn)*, (up + 2,)*] € T*. Whence [a +
(tn+20)*, a4 (U +yn)*, a+ (up +2,)*] € T". Thus [(a+ (un)*) + (2,)*, (a+
(un)*) + (gn)" (@ + (1n)*) + (20)"] € T".

To prove (ii), we proceed in a similar way. [ |

From Lemma 5.4 and (B), we infer the validity of the following result:

Lemma 5.5. Cy,(G)1=H"Cp(G) | =a+H* andCy,(G)=Cr(G) T UCL(G) | .
|

Since T is nonempty, 7" is nonempty as well. Then Lemmas 5.1, 5.3
and 5.5 yield:

Lemma 5.6. (Cy,(G),+,T") is a half lc-group. |
Let x € H. Define the mapping ¢ from G into Cy(G) by

Y(x) = (x,z,...)", Y(a+x)=a+(x).

Then v is an isomorphism of the half lc-group G into Cy(G). In the next,
we identify = and v (z) for each x € H. Then G is a half lc-subgroup of
Cr(G). Since H* is a Cantor extension of H, from Lemma 4.8, we conclude.

Theorem 5.7. C,(G) is a Cantor extension of G. |

Remark that it is easy to verify that (A) implies X;,, — X and a+ X,, —
a+ X in G.

Theorem 5.8. Let G1 and Gy be Cantor extensions of G. Then there exists
an isomorphism f from the half lc-group Gy, onto Go such that f(x) = x
for each x € G.

Proof. With respect to 4.8, G1 T and G5 T are Cantor extension of H.
By Theorem 2.6, there exists an isomorphism ¢ from G T onto Go T with
¢(x) = x for any x € H.

Choose an arbitrary element z € G; . The mapping f : Gi — Go
defined by f(z) = ¢(z) and f(a + z) = a + ¢(z) is an isomorphism of the
half lc-group G1 onto G and f(a+2) =a+¢(x) =a+x foreachx € H. m
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A half le-group Cj(G) corresponds to an element a € H'. Let o’ € H',
a’ # a. Then the half lc-group (C}(G); +',T") corresponding to a’ can be
constructed formally in the same way (4,7}, and a are replaced by +', 7’
and o', respectively). Therefore, the operations + and + (relations 7" and
T") coincide on G and H*. From Theorems 5.7 and 5.8, it follows that C,(G)
and C} (GQ) are isomorphic half lc-groups. Moreover, we have:

Lemma 5.9. A half lc-group Cy(G) = C) (G).

Proof. For each (z,)* € H* we get a + (x,)* = d' +' (—d' + a + z,)*.
Hence, a+ H* C o/ +' H*. Analogously, we get o’ +' H* C a+ H'. Therefore,
the set C,(G) = C}(G).
Evidently, that relations 7" and 7" coincide. Now we show that group
operations 4+ on C(G) and +' on C} (G) coincide.
Let (z5)*, (yn)* € H*. Then
(a+(zn)*)+(atyn)*) = (at+Tptaty,)” = (¢'—d' +atzn+d —d' +at+y,)* =
(d+ (—=d +a+zp,)*)+ (d+ (—d +a+yn)*);
()*+(a+(yn)*) = a+(—a+zn+aty,)* = d+' (—d' +a—atzp+aty,)” =
a'+'(=d +ap+ad—d+at+yn) = () + (d+ (= +a+yn)");
a+ (zn)") + (Yn)* = a+ (T + yn)* = a +' (_a, +a+z, +yn)t =
( _al+a+xn)*) + (yn)*) u

6. THE cAse H, = {0}

In this section, we assume that H, = {0}. Then H can be considered as a
subgroup of K.

Assume that G is a finite half lc-group. Then H is a finite lc-group.
With respect to Lemmas 2.4 and 4.7, we obtain:

Lemma 6.1. Let G be a finite half lc-group. Then G is C'-complete.
|
Now, assume that G is an infinite half [c-group. Then H is an infinite
le-group.
Let a be a fixed element of H'. We denote
a+K={a+zx:2€ K}
Ch(G)=KU(a+ K).

We will define a group operation + and a ternary relation 7" on Cj,(G).
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Let x,y,z € K. From Lemma 2.5, we infer that there are fundamental
sequences () and (yp) in G such that lim x,, = z,lim y,, =y in K.

The operation x + y on Cy(G) coincides with z + y on K.

Further, we put

(a+z)+ (a+y) =lim(a+zn+a+yn),
r+ (a+y)=a+lim(—a+xz,+a+y),
(a+x)+y=a+lim(z, + yn).
Limits are taken into account in K. The operation + is correctly defined.
The ternary relation T" on Cy(G) is defined in the following way:
Th coincides with T, on K.

Further, we put

la+z,a+y,a+ 2] € Thif[z,y, 2] € Tn,

if p,q,7 € Cp(G), [p,q,r] € T", then either {p,q,r} C K or {p,q,7} C
a+ K.
It is a routine to verify that the following assertion is true:

Lemma 6.2. (C,(G),+,T") is a half lc-group, Cp(G) T= K, Ch(G) | =

a+ K. [ ]
From Lemmas 2.5 and 4.7, it follows:

Lemma 6.3. Let G be an infinite half lc-group. Then Ch(G) is a Cantor

extension of G. [
Let o’ and C} (G) be as in the Section 5.

Remark 6.4. It is easy to verify that Theorem 5.8 and Lemma 5.9 are valid

also in the case H, = {0}.
From Lemmas 4.7, 2.5 and Theorem 2.6, we obtain:

Lemma 6.5. Let G be an infinite half lc-group. Then G is C-complete if
and only if H is isomorphic to K. [

Let G be an arbitrary le-group as in the section 4 (neither H, # {0}
nor H, = {0} is supposed). From Lemmas 6.1, 6.5 and 2.3, we conclude:
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Theorem 6.6. Let G be a half lc-group such that H is abelian and H' # ().
Then G 1is C-complete if and only if some of the following conditions is
fulfilled:

(i) G is finite;
(ii) H is isomorphic to K;
(iii) H, # {0} and H, is C-complete. |

By summarizing Theorem 5.7, Lemma 6.3, Theorem 5.8, and Remark 6.4
we get:

Theorem 6.7. Let G be a half lc-group such that H is abelian and H' # ().
Then

(i) There ezists a Cantor extension of G.

(i) If G1 and Gy are Cantor extensions of G, then there exists an
isomorphism from the half lc-group G1 onto Ga leaving all elements

of G fized.
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