Discussiones Mathematicae General Algebra and Applications $20(2000)$ 183-192

THE ORDER OF NORMAL FORM HYPERSUBSTITUTIONS OF TYPE (2)

Klaus Denecke

University of Potsdam, Institute of Mathematics PF 60 15 53, 14415 Potsdam, Germany e-mail: kdenecke@rz.uni-potsdam.de

AND

Kazem Mahdavi State University of New York, College at Potsdam Department of Mathematics Potsdam, NY 13767, USA e:mail mahdavk@potsdam.edu

Abstract

In [2] it was proved that all hypersubstitutions of type $\tau = (2)$ which are not idempotent and are different from the hypersubstitution which maps the binary operation symbol f to the binary term $f(y, x)$ have infinite order. In this paper we consider the order of hypersubstitutions within given varieties of semigroups. For the theory of hypersubstitution see [3].

Keywords: hypersubstitutions, terms, idempotent elements, elements of infinite order.

1991 Mathematics Subject Classification: Primary 20M14; Secondary 20M07, 08A40.

1 Preliminaries

In [1] hypersubstitutions were defined to make the concept of a hyperidentity more precise. In this paper we consider the type $\tau = (2)$ and the binary operation symbol f. Type (2) hypersubstitutions seem to be simple enough to be accessible, yet rich enough to provide an interesting structure.

An identity $s \approx t$ of type $\tau = (2)$ is called a hyperidentity of a variety V of this type if for every substitution of terms built up by at most two variables (binary terms) for f in $s \approx t$, the resulting identity holds in V. This shows that we are interested in mappings

$$
\sigma: \{f\} \to W(X_2),
$$

where $W(X_2)$ is the set of all terms constructed by f and the variables from the two-element alphabet $X_2 = \{x, y\}$. Any such mapping is called a hypersubstitution of type $\tau = (2)$. By σ_t we denote the hypersubstitution $\sigma: \{f\} \rightarrow \{t\}.$

A hypersubstitutions σ can be uniquely extended to a mapping $\hat{\sigma}$ on $W(X)$ (the set of all terms built up by f and variables from the countably infinite alphabet $X = \{x, y, z, \dots\}$ inductively defined by

- (i) if $t = x$ for some variable x, then $\hat{\sigma}[t] = x$,
- (ii) if $t = f(t_1, t_2)$ for some terms t_1, t_2 , then $\hat{\sigma}[t] = \sigma(f)(\hat{\sigma}[t_1], \hat{\sigma}[t_2])$.

By Hyp we denote the set of all hypersubstitutions of type $\tau = (2)$. For any two hypersubstitutions σ_1, σ_2 we define a product

$$
\sigma_1\circ_h\sigma_2:=\hat{\sigma}_1\circ\sigma_2
$$

and obtain together with $\sigma_{id} = \sigma_{xy}$, i.e., $\sigma_{id}(f) = xy$, a monoid Hyp $(Hyp; \circ_h, \sigma_{id})$. We will refer to this monoid as to Hyp . In [2] Denecke and Wismath described all idempotent elements of Hyp .

We use the following denotation: Let W_x denote the set of all words using only the letter x, and dually for W_y . We set

$$
E_x = \{\sigma_{xu} | u \in W_x\}, \quad E_y = \{\sigma_{vy} | v \in W_y\}, \quad E = E_x \cup E_y,
$$

where xu abbreviates $f(x, u)$.

Clearly, for any element xu with $u \in W_x$ we have

$$
\sigma_{xu} \circ_h \sigma_{xu} = \sigma_{xu}.
$$

and for any element vy with $v \in W_y$ we have

$$
\sigma_{vy} \circ_h \sigma_{vy} = \sigma_{vy}.
$$

This shows that all elements of E are idempotent. The hypersubstitutions σ_x, σ_y mapping the binary operation symbol f to x and to y, respectively, and the identity hypersubstitution are also idempotent.

The hypersubstitution σ_{yx} satisfies the equation

$$
\sigma_{yx} \circ_h \sigma_{yx} = \sigma_{xy}.
$$

Further we have:

Proposition 1.1 (see [2]). If $\sigma_s \circ_h \sigma_t = \sigma_{id}$, then either $\sigma_s = \sigma_t = \sigma_{id}$ or $\sigma_s = \sigma_t = \sigma_{yx}.$

In the following theorem we will use the concept of the length of a term as number of occurrences of variables in the term.

In [2] was proved

Theorem 1.2.

- (i) If $\sigma \in Hyp$ is an idempotent, then $\sigma \in E \cup {\sigma_x, \sigma_y, \sigma_{xy}}$.
- (ii) If $\sigma \in Hyp \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\})$, then $\sigma^n \neq \sigma^{n+1}$ for all $n \in \mathbb{N}$ with $n \geq 1$ (i.e. σ has infinite order).
- (iii) If $\sigma \in Hyp \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\})$, then the length of the word $(\sigma \circ_h \sigma)(f)$ is greater than the length of $\sigma(f)$.

If we set $G := Hyp \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\})$, then G does not form a subsemigroup of Hyp. In fact, we consider the hypersubstitution σ_{wx} where w is a term different from x and from y. Then $\sigma_{wx} \in G$. Let $u \in W_x$ and let $\overline{xu} \in W_x$ be the term formed from xu by substitution of all occurrences of the letters x by y, then $\sigma_{\overline{u}} \in G$. But then we see

$$
\sigma_{\overline{xu}}\circ_{h}\sigma_{wx}=\sigma_{xu}
$$

and the product of these elements from G is outside of G.

If we want to check whether an equation $s \approx t$ is satisfied as a hyperidentity in a given variety V of semigroups, it is not necessary to test all hypersubstitutions from Hyp . Depending on the identities satisfied in V we may restrict ourselves to a smaller subset of Hyp. By definition of a binary operation on this subset, we will define a new algebra which, in general is not a monoid and will determine the order of elements of those algebras.

2 Normal Form hypersubstitutions

In $[4]$ J. Płonka defined a binary relation on the set of all hypersubstitutions of an arbitrary type with respect to a variety of this type.

Definition 2.1. Let V be a variety of semigroups, and let $\sigma_1, \sigma_2 \in Hyp$. Then

$$
\sigma_1 \sim_V \sigma_2 : \Leftrightarrow \sigma_1(f) \approx \sigma_2(f) \in IdV.
$$

Clearly, the relation \sim_V is an equivalence relation on Hyp and has the following properties:

Proposition 2.2 ([3]). Let V be a variety of semigroups and let $\sigma_1, \sigma_2 \in$ Hyp.

- (i) If $\sigma_1 \sim_V \sigma_2$, then for any term t of type $\tau = (2)$ the equation $\hat{\sigma}_1[t] \approx$ $\hat{\sigma}_2[t]$ is an identity of V.
- (ii) If $s \approx t \in IdV, \hat{\sigma}_1[s] \approx \hat{\sigma}_1[t] \in IdV$ and $\sigma_1 \sim_V \sigma_2 \in IdV$, then $\hat{\sigma}_2[s] \approx \hat{\sigma}_2[t] \in IdV.$

In general, the relation \sim_V is not a congruence relation on Hyp. A variety is called *solid* if every identity in V is satisfied as a hyperidentity. For a solid variety V the relation \sim_V is a congruence relation on Hyp and the factor monoid Hyp/\sim_V exists.

In the arbitrary case we form also Hyp/\sim_V and consider a choice function

$$
\varphi: Hyp/_{\sim_V} \to Hyp
$$
, with $\varphi([\sigma_{id}]_{\sim_V}) = \sigma_{id}$,

which selects from each equivalence class exactly one element. Then we obtain the set $Hyp_{N_{\varphi}}(V) := \varphi(Hyp/\sim_V)$ of all normal form hypersubstitutions with respect to V and φ .

On the set $Hyp_{N_{\varphi}}(V)$ we define a binary operation

$$
\circ_N: Hyp_{N_{\varphi}}(V) \times Hyp_{N_{\varphi}}(V) \to Hyp_{N_{\varphi}}(V)
$$

by $\sigma_1 \circ_N \sigma_2 = \varphi(\sigma_1 \circ_h \sigma_2)$. This mapping is well-defined, but in general not associative. Therefore, $(Hyp_{N_{\varphi}}(V); \circ_N, \sigma_{id})$ is not a monoid. We call this structure groupoid of normal form hypersubstitutions. We ask, how to characterize the idempotent elements of $Hyp_{N_{\varphi}}(V)$ since for practical work normal form hypersubstitutions are more important than usual hypersubstitutions.

Proposition 2.3. Let V be a variety of semigroups and let

$$
\varphi: Hyp/_{\sim_V} \to Hyp
$$

be a choice function. Then

THE ORDER OF NORMAL FORM HYPERSUBSTITUTIONS OF TYPE (2) 187

- (i) $\sigma \in Hyp_{N_{\varphi}}(V)$ is an idempotent element iff $\sigma \circ_h \sigma \sim_V \sigma$.
- (ii) $\sigma_{yx} \circ_N \sigma_{yx} = \sigma_{xy}$ if $\sigma_{yx} \in Hyp_{N_{\varphi}}(V)$.

Proof. (i) If σ is an idempotent of $Hyp_{N_{\varphi}}(V)$, then $\sigma \circ_N \sigma = \sigma \sim_V \sigma \circ_h \sigma$. If conversely $\sigma \sim_V \sigma \circ_h \sigma$, then $\sigma \circ_N \sigma \sim_V \sigma$. But then $\sigma \circ_N \sigma = \sigma$ because of $\sigma \in Hyp_{N_{\varphi}}(V)$.

(ii) $\sigma_{yx} \circ_N \sigma_{yx} \sim_V \sigma_{yx} \circ_h \sigma_{yx} = \sigma_{xy} \in Hyp_{N_{\omega}}(V).$ Therefore, $\sigma_{yx} \circ_N \sigma_{yx} = \sigma_{xy}.$

As a consequence we have: if σ is an idempotent of Hyp and $\sigma \in Hyp_{N_{\varphi}}(V)$, then it is also an idempotent in $Hyp_{N_{\varphi}}(V)$ for any variety V of semigroups and any choice function φ . But in general $Hyp_{N_{\varphi}}(V)$ has idempotents which are not idempotents in Hyp.

3 Idempotents in $Hyp_{N_{\varphi}}(V)$

Now we want to consider the following variety of semigroups: $V =$ $Mod\{(xy)z \approx x(yz), xyuv \approx xuyv, x^3 \approx x\}$, i.e., the variety of all medial semigroups satisfying $x^3 \approx x$.

Let f be our binary operation symbol. As usual instead of $f(x, y)$ we will also write xy. The elements of $W(X_2)/IdV$ where $X_2 = \{x, y\}$ is a two-element alphabet, have the following form: $[x^n y^m]_{IdV}$, $[y^n x^m]_{IdV}$, $[xy^mx^n]_{IdV}, [yx^my^n]_{IdV}$ where $0 \leq m, n \leq 2$. So we get the set

$$
W(X_2)/IdV =
$$

= {[x]_{IdV}, [x²]_{IdV}, [xy]_{IdV}, [xy²]_{IdV}, [x²y]_{IdV}, [xyx]_{IdV}, [x²y²]_{IdV}, [xy²x]_{IdV},
[xyx²]_{IdV}, [xy²x²]_{IdV}, [y]_{IdV}, [y²]_{IdV}, [yx²]_{IdV}, [yx²]_{IdV}, [yxy²]_{IdV},
[y²x²]_{IdV}, [yx²y]_{IdV}, [yxy²]_{IdV}, [yx²y²]_{IdV}.}

From each class we exchange a normal form term using a certain choice function φ and obtain the following set of normal form hypersubstitutions: $Hyp_{N_{\varphi}}(V)=\{\sigma_x,\sigma_{x^2},\sigma_{xy},\sigma_{xy^2},\sigma_{x^2y},\sigma_{xyx},\sigma_{x^2y^2},\sigma_{xy^2x},\sigma_{xyz^2},\sigma_{xy^2x^2},\sigma_y,\sigma_{y^2},\sigma_y,\sigma_z\}$ $\sigma_{yx}, \sigma_{yx^2}, \sigma_{y^2x}, \sigma_{yxy}, \sigma_{y^2x^2}, \sigma_{yx^2y}, \sigma_{yxy^2}, \sigma_{yx^2y^2}\}.$

The multiplication in the groupoid $(Hyp_{N_{\varphi}}(V); \circ_N, \sigma_{id})$ is given by the following table.

The table shows that there are many idempotents in $Hyp_{N_{\varphi}}(V)$ which are not idempotents in Hyp.

The following example shows that $(Hyp_N(V); \circ_N, \sigma_{id})$ is not a monoid:

$$
(\sigma_{x^2} \circ_N \sigma_{xy^2}) \circ_N \sigma_{x^2} = \sigma_{x^2} \circ_N \sigma_{x^2} = \sigma_{x^2},
$$

$$
\sigma_{x^2} \circ_N (\sigma_{xy^2} \circ_N \sigma_{x^2}) = \sigma_{x^2} \circ_N \sigma_x = \sigma_x.
$$

All idempotent elements of $Hyp_N(V)$ are

 $\{\sigma_{xy}, \sigma_{x}, \sigma_{x^2}, \sigma_{xy^2}, \sigma_{x^2y}, \sigma_{x^2y^2}, \sigma_{xy^2x}, \sigma_{xyz^2}, \sigma_{xy^2x^2}, \sigma_{y}, \sigma_{y^2}, \sigma_{yx^2y}, \sigma_{yxy^2}, \sigma_{yx^2y^2}\}$

Now we ask for which varieties at most the idempotents of Hyp are idempotents of $Hyp_{N_{\varphi}}(V)$.

Theorem 3.1. For a variety V of semigroups the following are equivalent:

- (i) $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$,
- (ii) $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \text{ and } \sigma \circ_N \sigma = \sigma\} = \{\sigma | \sigma \in Hyp \text{ and } \sigma \circ_h \sigma =$ $\{\sigma}\}\cap Hyp_{N_{\varphi}}(V)$ for each choice function φ .

Proof. "(i)⇒(ii)" Let φ be an arbitrary choice function and let $\sigma \in$ $Hyp_{N_{\varphi}}(V)$ be an idempotent element of $Hyp_{N_{\varphi}}(V)$. Then $\sigma = \sigma \circ_N \sigma \sim_V$ $\sigma \circ_h \sigma$. Let u and v be the words corresponding to σ and to $\sigma \circ_h \sigma$, respectively. By $\ell(u)$ we denote the length of u. Assume that $\sigma \notin E \cup {\sigma_{id}, \sigma_x, \sigma_u}$. By Theorem 1.2 (iii) the length of v is greater than that of u since $\sigma \neq \sigma_{f(y,x)}$ by Theorem 2.3 (ii). But then $u \approx v \notin IdMod\{x(yz) \approx (xy)z, xy \approx yx\}$ since from the associative and the commutative identity one can derive only identities $u \approx v$ with $\ell(u) = \ell(v)$. But by assumption, $u \approx v \in IdV \subseteq$ $IdMod\{(xy)z \approx x(yz), xy \approx yx\},\$ a contradiction. This shows

 $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \text{ and } \sigma \circ_N \sigma = \sigma\} \subseteq (E \cup \{\sigma_x, \sigma_y, \sigma_{id}\}) \cap Hyp_{N_{\varphi}}(V).$

If conversely σ is an idempotent of Hyp, i.e. $\sigma \circ_h \sigma = \sigma$, then $\sigma \circ_N \sigma \sim_V$ $\sigma \circ_h \sigma = \sigma$ and thus $\sigma \circ_N \sigma = \sigma$, since $\sigma \in Hyp_{N_{\varphi}}(V)$ and σ is an idempotent of $Hyp_{N_{\varphi}}(V)$. Therefore we have equality.

"(ii) \Rightarrow (i)" Assume that $Mod\{(xy)z \approx x(yz), xy \approx yx\} \nsubseteq V$. Then there exists an identity $x^k \approx x^n \in IdV$ with $1 \leq k < n \in \mathbb{N}$. Now we construct an idempotent element of $Hyp_{N_{\varphi}}(V)$ which is not in $E \cup {\sigma_x, \sigma_y, \sigma_{id}}$. We set $m := n - k$ and $w := x^2u$ for some word $u \in W_x$ with $\ell(u) = 3km - 2$.

Clearly, $\sigma_w \notin E \cup {\sigma_x, \sigma_y, \sigma_{id}}$. It is easy to see that the length of w is $3km$ and the length of the word v corresponding to $\sigma_w \circ_h \sigma_w$ is $(3km)^2$. In fact, from $x^k \approx x^n \in IdV$ it follows $x^a \approx x^{a+bm} \in IdV$ for all natural numbers $a \geq k$ and $b \geq 1$ and in particular we have $x^{3km} \approx x^{3km + (9k^2m - 3k)m}$ $x^{(3km)^2}$. Thus

$$
(\sigma_w \circ_h \sigma_w)(f) \approx x^{(3km)^2} \approx x^{3km} \approx f(f(x, x), u) = \sigma_w(f).
$$

Therefore, $\sigma_w \circ_h \sigma_w \sim_V \sigma_w$ and $\sigma_w \circ_N \sigma_w \sim_V \sigma_w \circ_h \sigma_w \sim_V \sigma_w$. Let φ be a choice function with $\sigma_w \in Hyp_{N_{\varphi}}(V)$. Then from $\sigma_w \circ_N \sigma_w \sim_V \sigma_w$ it follows $\sigma_w \circ_N \sigma_w = \sigma_w$, a contradiction.

4 Elements of infinite order

We remember that the order of an element of a groupoid is the cardinality of the subgroupoid generated by this element if this cardinality is finite and the order is infinite otherwise. By $O(\sigma)$ we denote the order of the hypersubstitution $\sigma \in Hyp_{N_{\varphi}}(V)$. By Theorem 1.2 (ii), the hypersubstitution $\sigma_{f(x,f(y,x))}$ has infinite order in Hyp, but in $Hyp_{N_{\varphi}}(V)=\{\sigma_x,\sigma_{x^2},\sigma_{xy},\sigma_{xy^2},\sigma_{x^2y},\sigma_{xyx},\sigma_{x^2y^2},\sigma_{xy^2x},\sigma_{xyz^2},\sigma_{xy^2x^2},\sigma_y,\sigma_{y^2},\sigma_y,\sigma_z\}$ $\sigma_{yx}, \sigma_{yx^2}, \sigma_{y^2x}, \sigma_{yxy}, \sigma_{y^2x^2}, \sigma_{yx^2y}, \sigma_{yxy^2}, \sigma_{yx^2y^2} \},$ where $V = Mod\{(xy)z \approx$ $x(yz)$, xyuv $\approx xu$ yv, $x^3 \approx x$ we have

$$
\sigma_{xyx}\circ_N\sigma_{xyx}=\sigma_{xy^2x^2}
$$

and

$$
\sigma_{xyx}\circ_N\sigma_{xy^2x^2}=\sigma_{xy^2x^2}=\sigma_{xy^2x^2}\circ_N\sigma_{xyx},
$$

thus

$$
\sigma_{xyx}^3 = \sigma_{xyx}^2
$$

and σ_{xyx} has finite order. Now we characterize elements of infinite order with respect to varieties of semigroups which contain the variety of commutative semigroups.

By $\langle \sigma \rangle_{\circ_N}$ we denote the subgroupoid of $Hyp_{N_{\varphi}}(V)$ generated by the hypersubstitution σ .

Theorem 4.1. Let V be a variety of semigroups. Then the following are equivalent:

THE ORDER OF NORMAL FORM HYPERSUBSTITUTIONS OF TYPE (2) 191

- (i) $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$
- (ii) $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \text{ and the order of } \sigma \text{ is infinite}\} = Hyp_{N_{\varphi}}(V) \setminus (E \cup$ ${\sigma_x, \sigma_y, \sigma_{id}, \sigma_{yx}} \cup A_1 \cup A_2$), where $A_1 = {\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \cap (\{\sigma_v | v \in \mathcal{C}\})}$ $W_x\}\setminus (E_x\cup \{\sigma_x\})$ and $\langle \sigma \rangle_{\circ_N} \cap \{\sigma_{xu}|u \in W(X_2)\}\neq \emptyset\}$ and $A_2=$ $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \cap (\{\sigma_v | v \in W_y\} \setminus (E_y \cup \{\sigma_y\}) \text{ and } \langle \sigma \rangle_{\circ_N} \cap \{\sigma_{uy} | u \in$ $W(X_2) \neq \emptyset$ for each choice function φ .

Proof. "(i)⇒(ii)": Let φ be a choice function. Let σ be an element of $Hyp_{N_{\varphi}}(V)$ with $O(\sigma) = \infty$. By Theorem 3.1 and Proposition 2.3, $\sigma \notin E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\}.$

If we assume that σ belongs to A_1 , then there exists a word $u \in W(X_2)$ such that $\sigma_{xu} \in \langle \sigma \rangle_{\infty}$. Clearly, there exists a natural number $n \geq 1$ such that $\ell(\sigma_{xy}) = n$. Moreover, we have

$$
\sigma\circ_N\sigma_{xu}\sim_V\sigma\circ_h\sigma_{xu}=\sigma,
$$

since the word corresponding to σ is in W_x . Because of $\sigma \in Hyp_{N_{\varphi}}(V)$ we get

$$
\sigma\circ_N\sigma_{xu}=\sigma
$$

and $\ell(\sigma) + \ell(\sigma_{xu}) = n + 1$. But this means, $O(\sigma) \leq n$. Thus $\sigma \notin A_1$. In a similar way we show $\sigma \notin A_2$. This shows $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \text{ and the order }$ of σ is infinite} $\subseteq Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{yx}\} \cup A_1 \cup A_2).$

Suppose that $\sigma \in Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{yx}\} \cup A_1 \cup A_2)$. Let u be the word corresponding to σ .

If $u \in W_x$, then $\langle \sigma \rangle_{Hyp_{N_o}(V)} \subseteq \{\sigma_v | v \in W_x\}$. Otherwise there exists an identity $a \approx b \in IdV$ such that $a \in W_x$ and b uses the letter y. Clearly, $a \approx b \notin IdMod\{(xy)z \approx x(yz), xy \approx yx\}$ which contradicts $a \approx b \in IdV \subseteq$ $IdMod\{(xy)z \approx x(yz), xy \approx yx\}.$ Moreover, $\langle \sigma \rangle_{\infty} \cap {\sigma_{xu}}u \in W(X_2) = \emptyset$ and $\sigma_x \notin \langle \sigma \rangle_{\circ_N}$. Therefore, for $\sigma_1, \sigma_2 \in \langle \sigma \rangle_{Hyp_{N_\varphi}(V)}$ the length of the word corresponding to $\sigma_1 \circ_h \sigma_2$ is greater than the length of u. Hence for each $\sigma' \in \langle \sigma \rangle_{\circ_N}$ with $\ell(\sigma') \geq 2$ the length of the word corresponding to σ' is greater than the length of u. Otherwise there would exist an identity $c \approx d \in IdV$ such that the length of d is greater than that of c. Clearly, $c \approx d \notin IdMod\{(xy)z \approx x(yz), xy \approx yx\},$ what contradicts $c \approx d \in IdV \subseteq$ $IdMod(\{xy\}z \approx x(yz), xy \approx yx\}.$ Therefore, for all $\sigma_a, \sigma_b \in \langle \sigma \rangle_{\circ_N}$ there holds $\sigma_a \circ_N \sigma_b \neq \sigma$, i.e. $O(\sigma) = \infty$. If $u \in W_y$, then we get $O(\sigma) = \infty$ in the dual way.

If u uses both letters x and y, then $\langle \sigma \rangle_{\circ_N} \subseteq {\sigma_v | v \in W(X_2) \setminus (W_x \cup W_y)}$. Otherwise there is an identity $a \approx b \in IdV$ such that $a \in W_x \cup W_y$ and b uses both letters x and y. Clearly, $a \approx b \notin IdMod\{(xy)z \approx x(yz), xy \approx yx\}$ which contradicts $a \approx b \in IdV \subseteq IdMod\{(xy)z \approx x(yz), xy \approx yx\}.$ The same argumentation as above (using also $\sigma \notin {\sigma_{xy}, \sigma_{yx}}$) shows that for each $\sigma' \in \langle \sigma \rangle_{\circ_N}$ with $\ell(\sigma') \geq 2$ the length of the word corresponding to σ' is greater than the length of u. This means there don't exist hypersubstitutins $\sigma_a, \sigma_b \in \langle \sigma \rangle_{\circ_N}$ such that $\sigma_a \circ_N \sigma_b = \sigma$ and hence $O(\sigma) = \infty$. This shows $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \text{ and the order of } \sigma \text{ is infinite}\}\supseteq$ $Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{yx}\} \cup A_1 \cup A_2).$

 $\mathcal{L}''(ii) \Rightarrow (i)$ ": Assume that $Mod\{(xy)z \approx x(yz), xy \approx yx\} \nsubseteq V$. Then there exists an identity $x^k \approx x^n \in IdV$ with $1 \leq k \leq n \in \mathbb{N}$. We set $m := n - k$ and $w := f(f(\ldots f(x, y), \ldots, y), y)$, where w has the length $km + 1$. It is easy to check that $(\sigma_w \circ_h \sigma_w)(f) = v \approx xy^{(km)^2}$. In fact, from $x^k \approx x^n \in IdV$ and $m := n - k$, it follows $x^{km} \approx x^c \in IdV$ with $c = km + (k^2m - k)m = k^2m^2$. Therefore, $(\sigma_w \circ_h \sigma_w)(f) = v \approx xy^{k^2m^2} \approx$ $xy^{km} \approx \sigma_w(f)$, i.e. $\sigma_w \circ_h \sigma_w \sim_V \sigma_w$ and thus $\sigma_w \circ_N \sigma_w \sim_V \sigma_w \circ_h \sigma_w \sim_V \sigma_w$. Let φ be a choice function such that $\sigma_w \in Hyp_{N_{\varphi}}(V)$. Obviously, $\sigma_w \in$ $Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{f(y,x)}\} \cup A_1 \cup A_2)$ and thus $O(\sigma) = \infty$. But $\sigma_w \in Hyp_{N_{\varphi}}(V)$ forces $\sigma_w \circ_N \sigma_w = \sigma_w$ and $O(\sigma) = 2$, what contradicts $O(\sigma) = \infty$. Therefore $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$.

References

- [1] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, *Hyperidentities, hyper*equational classes and clone congruences, Contributions to General Algebra 7 (1991), 97–118.
- [2] K. Denecke and Sh. Wismath, The Monoid of Hypersubstitutions of Type (2), Contributions to General Algebra, Verlag Johannes Heyn, 10 (1998), 110–126.
- [3] K. Denecke and Sh. Wismath, "Hyperidentities and clones," Gordon and Breach Sci. Publ., Amsterdam-Singapore 2000.
- [4] J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106–115 in: "Proceedings of the International Conference: Summer school on General Algebra and Ordered sets 1994", Palacký University, Olomouc 1994.

Received 3 December 1997 Revised 30 December 1999