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Abstract

In [2] it was proved that all hypersubstitutions of type τ = (2) which
are not idempotent and are different from the hypersubstitution which
maps the binary operation symbol f to the binary term f(y, x) have
infinite order. In this paper we consider the order of hypersubstitutions
within given varieties of semigroups. For the theory of hypersubs-
titution see [3].
Keywords: hypersubstitutions, terms, idempotent elements, elements
of infinite order.
1991 Mathematics Subject Classification: Primary 20M14;
Secondary 20M07, 08A40.

1 Preliminaries

In [1] hypersubstitutions were defined to make the concept of a hyperidentity
more precise. In this paper we consider the type τ = (2) and the binary
operation symbol f . Type (2) hypersubstitutions seem to be simple enough
to be accessible, yet rich enough to provide an interesting structure.
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An identity s ≈ t of type τ = (2) is called a hyperidentity of a variety V of
this type if for every substitution of terms built up by at most two variables
(binary terms) for f in s ≈ t, the resulting identity holds in V . This shows
that we are interested in mappings

σ : {f} → W (X2),

where W (X2) is the set of all terms constructed by f and the variables
from the two-element alphabet X2 = {x, y}. Any such mapping is called a
hypersubstitution of type τ = (2). By σt we denote the hypersubstitution
σ : {f} → {t}.

A hypersubstitutions σ can be uniquely extended to a mapping σ̂ on
W (X) (the set of all terms built up by f and variables from the countably
infinite alphabet X = {x, y, z, · · ·}) inductively defined by

(i) if t = x for some variable x, then σ̂[t] = x,

(ii) if t = f(t1, t2) for some terms t1, t2, then σ̂[t] = σ(f)(σ̂[t1], σ̂[t2]).

By Hyp we denote the set of all hypersubstitutions of type τ = (2). For any
two hypersubstitutions σ1, σ2 we define a product

σ1 ◦h σ2 := σ̂1 ◦ σ2

and obtain together with σid = σxy, i.e., σid(f) = xy, a monoid Hyp =
(Hyp; ◦h, σid). We will refer to this monoid as to Hyp. In [2] Denecke and
Wismath described all idempotent elements of Hyp.

We use the following denotation: Let Wx denote the set of all words
using only the letter x, and dually for Wy. We set

Ex = {σxu| u ∈ Wx}, Ey = {σvy| v ∈ Wy}, E = Ex ∪ Ey,

where xu abbreviates f(x, u).
Clearly, for any element xu with u ∈ Wx we have

σxu ◦h σxu = σxu.

and for any element vy with v ∈ Wy we have

σvy ◦h σvy = σvy.

This shows that all elements of E are idempotent. The hypersubstitutions
σx, σy mapping the binary operation symbol f to x and to y, respectively,
and the identity hypersubstitution are also idempotent.
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The hypersubstitution σyx satisfies the equation

σyx ◦h σyx = σxy.

Further we have:

Proposition 1.1 (see [2]). If σs ◦h σt = σid, then either σs = σt = σid or
σs = σt = σyx.

In the following theorem we will use the concept of the length of a term as
number of occurrences of variables in the term.

In [2] was proved

Theorem 1.2.
(i) If σ ∈ Hyp is an idempotent, then σ ∈ E ∪ {σx, σy, σxy}.
(ii) If σ ∈ Hyp r(E ∪ {σx, σy, σxy, σyx}), then σn 6= σn+1 for all n∈ IN

with n ≥ 1 (i.e. σ has infinite order).

(iii) If σ ∈ Hypr(E ∪ {σx, σy, σxy, σyx}), then the length of the word
(σ ◦h σ)(f) is greater than the length of σ(f).

If we set G := Hypr(E ∪ {σx, σy, σxy, σyx}), then G does not form a sub-
semigroup of Hyp. In fact, we consider the hypersubstitution σwx where w
is a term different from x and from y. Then σwx ∈ G. Let u ∈ Wx and let
xu ∈ Wx be the term formed from xu by substitution of all occurrences of
the letters x by y, then σxu ∈ G. But then we see

σxu ◦h σwx = σxu

and the product of these elements from G is outside of G.

If we want to check whether an equation s ≈ t is satisfied as a hyperidentity
in a given variety V of semigroups, it is not necessary to test all hypersubsti-
tutions from Hyp. Depending on the identities satisfied in V we may restrict
ourselves to a smaller subset of Hyp. By definition of a binary operation on
this subset, we will define a new algebra which, in general is not a monoid
and will determine the order of elements of those algebras.

2 Normal Form hypersubstitutions

In [4] J. PÃlonka defined a binary relation on the set of all hypersubstitutions
of an arbitrary type with respect to a variety of this type.
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Definition 2.1. Let V be a variety of semigroups, and let σ1, σ2 ∈ Hyp.
Then

σ1 ∼V σ2 :⇔ σ1(f) ≈ σ2(f) ∈ IdV.

Clearly, the relation ∼V is an equivalence relation on Hyp and has the
following properties:

Proposition 2.2 ([3]). Let V be a variety of semigroups and let σ1, σ2 ∈
Hyp.

(i) If σ1 ∼V σ2, then for any term t of type τ = (2) the equation σ̂1[t] ≈
σ̂2[t] is an identity of V .

(ii) If s ≈ t ∈ IdV, σ̂1[s] ≈ σ̂1[t] ∈ IdV and σ1 ∼V σ2 ∈ IdV, then
σ̂2[s] ≈ σ̂2[t] ∈ IdV .

In general, the relation ∼V is not a congruence relation on Hyp. A variety is
called solid if every identity in V is satisfied as a hyperidentity. For a solid
variety V the relation ∼V is a congruence relation on Hyp and the factor
monoid Hyp/∼V exists.

In the arbitrary case we form also Hyp/∼V and consider a choice function

ϕ : Hyp/∼V → Hyp, with ϕ([σid]∼V ) = σid,

which selects from each equivalence class exactly one element. Then we
obtain the set HypNϕ(V ) := ϕ(Hyp/∼V ) of all normal form hypersubstitu-
tions with respect to V and ϕ.

On the set HypNϕ(V ) we define a binary operation

◦N : HypNϕ(V )×HypNϕ(V ) → HypNϕ(V )

by σ1 ◦N σ2 = ϕ(σ1 ◦h σ2). This mapping is well-defined, but in general
not associative. Therefore, (HypNϕ(V ); ◦N , σid) is not a monoid. We call
this structure groupoid of normal form hypersubstitutions. We ask, how
to characterize the idempotent elements of HypNϕ(V ) since for practical
work normal form hypersubstitutions are more important than usual
hypersubstitutions.

Proposition 2.3. Let V be a variety of semigroups and let

ϕ : Hyp/∼V → Hyp

be a choice function. Then



The order of normal form hypersubstitutions of type (2) 187

(i) σ ∈ HypNϕ(V ) is an idempotent element iff σ ◦h σ ∼V σ.

(ii) σyx ◦N σyx = σxy if σyx ∈ HypNϕ(V ).

Proof. (i) If σ is an idempotent of HypNϕ(V ), then σ ◦N σ = σ ∼V σ ◦h σ.
If conversely σ ∼V σ ◦h σ, then σ ◦N σ ∼V σ. But then σ ◦N σ = σ because
of σ ∈ HypNϕ(V ).

(ii) σyx ◦N σyx ∼V σyx ◦h σyx = σxy ∈ HypNϕ(V ). Therefore,
σyx ◦N σyx = σxy.

As a consequence we have: if σ is an idempotent of Hyp and σ∈HypNϕ(V ),
then it is also an idempotent in HypNϕ(V ) for any variety V of semigroups
and any choice function ϕ. But in general HypNϕ(V ) has idempotents which
are not idempotents in Hyp.

3 Idempotents in HypNϕ
(V )

Now we want to consider the following variety of semigroups: V =
Mod{(xy)z ≈ x(yz), xyuv ≈ xuyv, x3 ≈ x} , i.e., the variety of all
medial semigroups satisfying x3 ≈ x.

Let f be our binary operation symbol. As usual instead of f(x, y) we
will also write xy. The elements of W (X2)/IdV where X2 = {x, y} is a
two-element alphabet, have the following form: [xnym]IdV , [ynxm]IdV ,
[xymxn]IdV , [yxmyn]IdV where 0 ≤ m,n ≤ 2. So we get the set

W (X2)/IdV =

= {[x]IdV , [x2]IdV , [xy]IdV , [xy2]IdV , [x2y]IdV , [xyx]IdV , [x2y2]IdV , [xy2x]IdV ,

[xyx2]IdV , [xy2x2]IdV , [y]IdV , [y2]IdV , [yx]IdV , [yx2]IdV , [y2x]IdV , [yxy]IdV ,

[y2x2]IdV , [yx2y]IdV , [yxy2]IdV , [yx2y2]IdV .}

From each class we exchange a normal form term using a certain choice
function ϕ and obtain the following set of normal form hypersubstitutions:
HypNϕ(V ) = {σx, σx2 , σxy, σxy2 , σx2y, σxyx, σx2y2 , σxy2x, σxyx2 , σxy2x2 , σy, σy2 ,
σyx, σyx2 , σy2x, σyxy, σy2x2 , σyx2y, σyxy2 , σyx2y2}.

The multiplication in the groupoid (HypNϕ(V ); ◦N , σid) is given by the
following table.
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The table shows that there are many idempotents in HypNϕ(V ) which are
not idempotents in Hyp.

The following example shows that (HypN (V ); ◦N , σid) is not a monoid:

(σx2 ◦N σxy2) ◦N σx2 = σx2 ◦N σx2 = σx2 ,

σx2 ◦N (σxy2 ◦N σx2) = σx2 ◦N σx = σx.

All idempotent elements of HypN (V ) are

{σxy, σx, σx2 , σxy2 , σx2y, σx2y2 , σxy2x, σxyx2 , σxy2x2 , σy, σy2 , σyx2y, σyxy2 , σyx2y2}.
Now we ask for which varieties at most the idempotents of Hyp are

idempotents of HypNϕ(V ).

Theorem 3.1. For a variety V of semigroups the following are equivalent:

(i) Mod{(xy)z ≈ x(yz), xy ≈ yx} ⊆ V,

(ii) {σ|σ ∈ HypNϕ(V ) and σ ◦N σ = σ} = {σ|σ ∈ Hyp and σ ◦h σ =
σ} ∩HypNϕ(V ) for each choice function ϕ.

Proof. ”(i)⇒(ii)” Let ϕ be an arbitrary choice function and let σ ∈
HypNϕ(V ) be an idempotent element of HypNϕ(V ). Then σ = σ ◦N σ ∼V

σ ◦h σ. Let u and v be the words corresponding to σ and to σ ◦h σ, respec-
tively. By `(u) we denote the length of u. Assume that σ 6∈ E∪{σid, σx, σy}.
By Theorem 1.2 (iii) the length of v is greater than that of u since σ 6= σf(y,x)

by Theorem 2.3 (ii). But then u ≈ v 6∈ IdMod{x(yz) ≈ (xy)z, xy ≈ yx}
since from the associative and the commutative identity one can derive only
identities u ≈ v with `(u) = `(v). But by assumption, u ≈ v ∈ IdV ⊆
IdMod{(xy)z ≈ x(yz), xy ≈ yx}, a contradiction. This shows

{σ|σ ∈ HypNϕ(V ) and σ ◦N σ = σ} ⊆ (E ∪ {σx, σy, σid}) ∩HypNϕ(V ).

If conversely σ is an idempotent of Hyp, i.e. σ ◦h σ = σ, then σ ◦N σ ∼V

σ◦h σ = σ and thus σ◦N σ = σ, since σ ∈ HypNϕ(V ) and σ is an idempotent
of HypNϕ(V ). Therefore we have equality.

”(ii)⇒(i)” Assume that Mod{(xy)z ≈ x(yz), xy ≈ yx} 6⊆ V . Then there
exists an identity xk ≈ xn ∈ IdV with 1 ≤ k < n ∈ IN. Now we construct
an idempotent element of HypNϕ(V ) which is not in E ∪ {σx, σy, σid}. We
set m := n− k and w := x2u) for some word u ∈ Wx with `(u) = 3km− 2.
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Clearly, σw 6∈ E ∪ {σx, σy, σid}. It is easy to see that the length of w is 3km
and the length of the word v corresponding to σw ◦h σw is (3km)2. In fact,
from xk ≈ xn ∈ IdV it follows xa ≈ xa+bm ∈ IdV for all natural numbers
a ≥ k and b ≥ 1 and in particular we have x3km ≈ x3km+(9k2m−3k)m =
x(3km)2 . Thus

(σw ◦h σw)(f) ≈ x(3km)2 ≈ x3km ≈ f(f(x, x), u) = σw(f).

Therefore, σw ◦h σw ∼V σw and σw ◦N σw ∼V σw ◦h σw ∼V σw. Let ϕ be a
choice function with σw ∈ HypNϕ(V ). Then from σw ◦N σw ∼V σw it follows
σw ◦N σw = σw, a contradiction.

4 Elements of infinite order

We remember that the order of an element of a groupoid is the
cardinality of the subgroupoid generated by this element if this
cardinality is finite and the order is infinite otherwise. By O(σ) we denote
the order of the hypersubstitution σ ∈ HypNϕ(V ). By Theorem 1.2 (ii),
the hypersubstitution σf(x,f(y,x)) has infinite order in Hyp, but in
HypNϕ(V ) = {σx, σx2 , σxy, σxy2 , σx2y, σxyx, σx2y2 , σxy2x, σxyx2 , σxy2x2 , σy, σy2 ,
σyx, σyx2 , σy2x, σyxy, σy2x2 , σyx2y, σyxy2 , σyx2y2}, where V = Mod{(xy)z ≈
x(yz), xyuv ≈ xuyv, x3 ≈ x} we have

σxyx ◦N σxyx = σxy2x2

and
σxyx ◦N σxy2x2 = σxy2x2 = σxy2x2 ◦N σxyx,

thus
σ3

xyx = σ2
xyx

and σxyx has finite order. Now we characterize elements of infinite order
with respect to varieties of semigroups which contain the variety of
commutative semigroups.

By 〈σ〉◦N we denote the subgroupoid of HypNϕ(V ) generated by the
hypersubstitution σ.

Theorem 4.1. Let V be a variety of semigroups. Then the following are
equivalent:
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(i) Mod{(xy)z ≈ x(yz), xy ≈ yx} ⊆ V

(ii) {σ|σ ∈ HypNϕ(V ) and the order of σ is infinite} = HypNϕ(V )r(E ∪
{σx, σy, σid, σyx}∪A1∪A2), where A1 = {σ|σ ∈ HypNϕ(V )∩ ({σv|v ∈
Wx}r(Ex ∪ {σx}) and 〈σ〉◦N ∩ {σxu|u ∈ W (X2)} 6= ∅} and A2 =
{σ|σ ∈ HypNϕ(V )∩ ({σv|v ∈ Wy}r(Ey ∪{σy}) and 〈σ〉◦N ∩{σuy|u ∈
W (X2)} 6= ∅} for each choice function ϕ.

Proof. ”(i)⇒(ii)”: Let ϕ be a choice function. Let σ be an element of
HypNϕ(V ) with O(σ) = ∞. By Theorem 3.1 and Proposition 2.3,
σ 6∈ E ∪ {σx, σy, σxy, σyx}.

If we assume that σ belongs to A1, then there exists a word u ∈ W (X2)
such that σxu ∈ 〈σ〉◦N . Clearly, there exists a natural number n ≥ 1 such
that `(σxy) = n. Moreover, we have

σ ◦N σxu ∼V σ ◦h σxu = σ,

since the word corresponding to σ is in Wx. Because of σ ∈ HypNϕ(V )
we get

σ ◦N σxu = σ

and `(σ) + `(σxu) = n + 1. But this means, O(σ) ≤ n. Thus σ 6∈ A1. In a
similar way we show σ 6∈ A2. This shows {σ|σ ∈ HypNϕ(V ) and the order
of σ is infinite} ⊆ HypNϕ(V )r(E ∪ {σx, σy, σid, σyx} ∪A1 ∪A2).

Suppose that σ ∈ HypNϕ(V )r(E ∪ {σx, σy, σid, σyx} ∪ A1 ∪A2). Let u
be the word corresponding to σ.

If u ∈ Wx, then 〈σ〉HypNϕ(V ) ⊆ {σv|v ∈ Wx}. Otherwise there exists an
identity a ≈ b ∈ IdV such that a ∈ Wx and b uses the letter y. Clearly,
a ≈ b 6∈ IdMod{(xy)z ≈ x(yz), xy ≈ yx} which contradicts a ≈ b ∈ IdV ⊆
IdMod{(xy)z ≈ x(yz), xy ≈ yx}. Moreover, 〈σ〉◦N ∩ {σxu|u ∈ W (X2)} = ∅
and σx 6∈ 〈σ〉◦N . Therefore, for σ1, σ2 ∈ 〈σ〉HypNϕ(V ) the length of the
word corresponding to σ1 ◦h σ2 is greater than the length of u. Hence for
each σ′ ∈ 〈σ〉◦N with `(σ′) ≥ 2 the length of the word corresponding to
σ′ is greater than the length of u. Otherwise there would exist an identity
c ≈ d ∈ IdV such that the length of d is greater than that of c. Clearly,
c ≈ d 6∈ IdMod{(xy)z ≈ x(yz), xy ≈ yx}, what contradicts c ≈ d ∈ IdV ⊆
IdMod{(xy)z ≈ x(yz), xy ≈ yx}. Therefore, for all σa, σb ∈ 〈σ〉◦N there
holds σa ◦N σb 6= σ, i.e. O(σ) = ∞. If u ∈ Wy, then we get O(σ) = ∞ in
the dual way.
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If u uses both letters x and y, then 〈σ〉◦N ⊆ {σv|v ∈ W (X2)r(Wx ∪Wy)}.
Otherwise there is an identity a ≈ b ∈ IdV such that a ∈ Wx ∪Wy and b
uses both letters x and y. Clearly, a ≈ b 6∈ IdMod{(xy)z ≈ x(yz), xy ≈ yx}
which contradicts a ≈ b ∈ IdV ⊆ IdMod{(xy)z ≈ x(yz), xy ≈ yx}.
The same argumentation as above (using also σ 6∈ {σxy, σyx}) shows that
for each σ′ ∈ 〈σ〉◦N with `(σ′) ≥ 2 the length of the word corresponding
to σ′ is greater than the length of u. This means there don’t exist
hypersubstitutins σa, σb ∈ 〈σ〉◦N such that σa ◦N σb = σ and hence
O(σ) = ∞. This shows {σ|σ ∈ HypNϕ(V ) and the order of σ is infinite} ⊇
HypNϕ(V )r(E ∪ {σx, σy, σid, σyx} ∪A1 ∪A2).

”(ii) ⇒ (i)”: Assume that Mod{(xy)z ≈ x(yz), xy ≈ yx} 6⊆ V . Then
there exists an identity xk ≈ xn ∈ IdV with 1 ≤ k < n ∈ IN. We set
m := n − k and w := f(f(. . . f(x, y), . . . , y), y), where w has the length
km + 1. It is easy to check that (σw ◦h σw)(f) = v ≈ xy(km)2 . In fact,
from xk ≈ xn ∈ IdV and m := n − k, it follows xkm ≈ xc ∈ IdV with
c = km + (k2m − k)m = k2m2. Therefore, (σw ◦h σw)(f) = v ≈ xyk2m2 ≈
xykm ≈ σw(f), i.e. σw ◦h σw ∼V σw and thus σw ◦N σw ∼V σw ◦h σw ∼V σw.
Let ϕ be a choice function such that σw ∈ HypNϕ(V ). Obviously, σw ∈
HypNϕ(V )r(E ∪ {σx, σy, σid, σf(y,x)} ∪ A1 ∪ A2) and thus O(σ) = ∞. But
σw ∈ HypNϕ(V ) forces σw ◦N σw = σw and O(σ) = 2, what contradicts
O(σ) = ∞. Therefore Mod{(xy)z ≈ x(yz), xy ≈ yx} ⊆ V .
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