EQUIVALENT CONDITIONS FOR P-NILPOTENCE

KERESZTÉLY CORRÁDI AND ERZSÉBET HORVÁTH

Eötvös Loránd University, Department of Computer Techn. H-1088 Budapest, Múzeum krt. 6–8 Technical University of Budapest, Department of Algebra H-1521 Budapest, Műegyetem rkp. 3–9

e-mail: he@math.bme.hu

Abstract

In the first part of this paper we prove without using the transfer or characters the equivalence of some conditions, each of which would imply p-nilpotence of a finite group G. The implication of p-nilpotence also can be deduced without the transfer or characters if the group is p-constrained. For p-constrained groups we also prove an equivalent condition so that $\mathrm{O}^{q'}(G)P$ should be p-nilpotent. We show an example that this result is not true for some non-p-constrained groups.

In the second part of the paper we prove a generalization of a theorem of Itô with the help of the knowledge of the irreducible characters of the minimal non-nilpotent groups.

Keywords: *p*-nilpotent group, *p*-constrained group, character of a group, Schmidt group, Thompson-ordering, Sylow *p*-group.

1991 Mathematics Subject Classification: 20D15 and 20C15.

1 Definitions and known results

We know the remarkable theorems of Frobenius which tell that in Theorem 2.1 (i) and (iv) both imply that the finite group G has a normal p-complement. All existing proofs of them use the transfer homomorphism or characters.

The well-studied minimal non-nilpotent groups, i.e. non-nilpotent groups, each of whose subgroups are nilpotent, sometimes are called Schmidt groups or (p,q)-groups. They can be described without using the transfer, see 5.1 Satz and 5.2 Satz in pp. 280-281 of [6]. Let G be a minimal non-nilpotent group. Then it can be proved without using the transfer or characters, that

- 1. G is solvable.
- 2. |G| is divisible only by 2 primes, say $|G| = p^a q^b$.
- 3. $G' = P \in \text{Syl}_n(G)$.
- 4. If p > 2, then $\exp(P) = p$; if p = 2, then $\exp(P) \le 4$; $\exp(\operatorname{Z}(P)) = p$ in all cases.
- 5. P is either abelian or $P' = \Phi(P) = Z(P) \le Z(G)$.
- 6. If $Q \in \text{Syl}_q(G)$, then Q is cyclic; and if $Q = \langle x \rangle$, then $\langle x^q \rangle \leq \operatorname{Z}(G)$.
- 7. If P is abelian, then Q acts irreducibly on P; if P is nonabelian, then Q acts irreducibly on $P/\mathbb{Z}(P)$. If P is abelian, then P is of exponent p; and if P is nonabelian, then $P/\mathbb{Z}(P)$ is also of exponent p. So, they can be considered as vector spaces over GF(p). Their dimension is o(p)(mod(q)), which is even in the nonabelian case.
- 8. G is generated by its Sylow q-subgroups.

These groups are non-p-nilpotent. It can also be proved using the transfer or characters that a group is p-nilpotent if and only if, it does not contain such a subgroup.

We shall use the following:

Notation 11. We shall write $(p,q) \not\leq G$ if the group G does not contain a (p,q)-group, otherwise we write $(p,q) \leq G$.

Let us recall the definition of Thompson-ordering:

Definition 12. Let G be a finite group. Let \mathcal{P} be a property of subgroups of G. Let $\mathcal{A} = \{A \mid p$ -subgroup of G, $N_G(A) < G$, A p-group, $N_G(A)$ has the property $\mathcal{P}\}$. We tell for $A_1, A_2 \in \mathcal{A}$ that A_1 is smaller than A_2 in the Thompson-ordering if either $|N_G(A_1)|_p < |N_G(A_2)|_p$, or $|N_G(A_1)|_p = |N_G(A_2)|_p$ and $|A_1| < |A_2|$.

Definition 13. Let $P \in \operatorname{Syl}_p(G)$. A subgroup $U \leq P$ is called strongly closed if for every $u \in U$ if $u^x \in P$ then $u^x \in U$.

2 Main results

The aim of this paper is to prove that the equivalence of the following four conditions can be proved without the use of transfer or characters:

Theorem 21. Let G be a finite group, let $P \in \text{Syl}_p(G)$. Then the following are equivalent:

- (i) If $x, y \in P$ are G-conjugate, then they are conjugate already in P;
- (ii) If $x, y \in P$ of order p or 4 and are G-conjugate, then they are conjugate already in P;
- (iii) $(p,q) \not\leq G$ for every prime $q \neq p$;
- (iv) For every p-subgroup $U \leq G$, $N_G(U)/C_G(U)$ is a p-group.

As a corollary we get:

Theorem 22. Let G be a p-constrained group, $P \in \operatorname{Syl}_p(G)$. If any of the conditions of the above theorem holds for G, then one can deduce without using the transfer that G has a normal p-complement.

As an application of Theorem 2.1 we prove also the following:

Theorem 23. Let G be a finite group, let $p \neq q$ be primes with $p, q \in \pi(G)$. Let $P \in \operatorname{Syl}_p(G)$ and let $\operatorname{O}^{q'}(G)$ denote the subgroup of G generated by the q-elements of G. If G is p-constrained then the following are equivalent:

- (i) $(p,q) \not\leq G$.
- (ii) $O^{q'}(G)P$ has a normal p-complement.

Another application of Theorem 2.2 is to prove without using the transfer the following generalization of a theorem of Itô:

Theorem 24. Let G be a finite p-constrained group, let $P \in \text{Syl}_p(G)$. Let us suppose that χ is a character of G satisfying the following conditions:

- α) $\chi(1) \leq 2p-2$,
- β) for every subgroup $H \leq G$, χ_H does not have a constituent of degree p,
- γ) Ker(χ) = 1.

Then one of the following two possibilities holds:

- (i) P is abelian and P is normal in G;
- (ii) p is a Fermat-prime and one of the constituents of χ has degree at least p-1.

The inequality in α) is sharp. There is a solvable group G_0 having a character $\chi_0 \in \operatorname{Char}(G_0)$ satisfying β) and γ) with degree $\chi_0(1) = 2p - 1$, such that for this pair the assertion of the Theorem does not hold.

3 Preliminary lemmas

In the proof of Theorem 2.1 we will need the following lemma, which is Lemma 2 in [4].

Lemma 31. Let G be a group with $H \in \operatorname{Hall}_{\pi}(G)$ and with the property that every π -subgroup Y of G can be conjugated into H. Let K be a class of elements of H, which is closed under conjugation inside H with elements of G such that if two elements of K are conjugate in G then they are already conjugate in G. Then if $G_1 \triangleleft G$ and $|G:G_1| = q$, where $q \in \pi$, then for $G_1 = H \cap G_1$ it holds that each pair of elements of G are already conjugate in G.

For the proof of Theorem 2.1 we will also need the following lemma, which generalizes both Lemma 5 in [4] and Lemma 3.2 in [3].

Lemma 32. Let $q \in \pi(G) \setminus \{p\}$ be a fixed prime, $P \in \operatorname{Syl}_p(G)$, U < P abelian and strongly closed in P. Then if $(p,q) \not \leq \operatorname{N}_G(U)$ then $(p,q) \not \leq G$, as well.

Proof. Let G be a counterexample of minimal order.

First we prove that we may assume that $O_p(G) = 1$.

Let $O_p(G) > 1$ and let $B \triangleleft G$ be a p-subgroup. Let $\overline{G} = G/B$, and the images of U and P in this factor group let \overline{U} and \overline{P} , respectively. Then $\overline{P} \in Syl_p(\overline{G})$ and the triple $(\overline{G}, \overline{P}, \overline{U})$ satisfies the conditions set for (G, P, U). To see this we have to show only that $(p,q) \not\leq N_G(U)$ implies $(p,q) \not\leq N_{\overline{G}}(\overline{U})$. Let M be the inverse image of $N_{\overline{G}}(\overline{U})$ in G. Here M < G, since if $\overline{U} \triangleleft \overline{G}$ then $U^G \leq P$, and as $U \leq P$ is strongly closed, $U^G = U$ would follow. This would imply $(p,q) \not\leq N_G(U) = G$, which is a contradiction. So M < G. But $P \leq M$ and $N_G(U) = N_M(U)$. The triple (M,P,U) satisfies the conditions of the Lemma. By induction $(p,q) \not\leq M$. By [2], $(p,q) \not\leq \overline{M} = N_{\overline{G}}(\overline{U})$, as well. Hence the conditions of the Lemma are satisfied by the triple $(\overline{G}, \overline{P}, \overline{U})$ and by induction $(p,q) \not\leq \overline{G}$.

Let V be a (p,q)-group in G. Then $V' = V_p \in \mathrm{Syl}_p(V)$ and by the above result, its image \overline{V} in \overline{G} is nilpotent. Hence $V_p \leq B$. There are two cases:

- (i) $U \cap \mathcal{O}_p(G) = 1$,
- (ii) $U \cap \mathcal{O}_p(G) \neq 1$.

- Ad (i): We know that $U \triangleleft P$ and we may assume that $V_p \leq P$, by replacing V with a suitable conjugate of it. Hence $[U, V_p] \leq U$. On the other hand as $V_p \leq \mathcal{O}_p(G)$, $[U, V_p] \leq \mathcal{O}_p(G) \cap U = 1$.
- Ad (ii): If $U \cap O_p(G) \neq 1$, then we may choose B equal to it, because $U \cap O_p(G)$ is normal in G as U is strongly closed. Hence $V_p \leq B \leq U$ by the above results. But U is abelian, so $[V_p, U] = 1$ in this case, too.

Hence in both cases (i) and (ii) $[V_p, U] = 1$. Let $N = N_G(V_p)$. We claim that N = G. If N < G then if we choose $S \in \operatorname{Syl}_p(N)$ with the property $U \leq S$, then the triple (N, S, U) satisfies the conditions of the Lemma. So by induction $(p,q) \not\leq N$. This contradicts the fact that $V \leq N$. Thus V_p is normal in G. Let $C = C_G(V_p)$. Then $C \triangleleft G$. Let us choose $Q \in \operatorname{Syl}_q(G)$ so that it should contain a Sylow q-subgroup of V. Set L = CQ. Then $P \cap L = P \cap C \in \operatorname{Syl}_p(L)$ and $P \cap C \triangleleft P$. Then the triple $(L, P \cap L, U)$ satisfies the conditions of the Lemma. Hence if L < G then by induction $(p,q) \not\leq L$, which is impossible as $V \leq L$. Thus G = L = CQ. Since $P = P \cap L = P \cap C$, $P \leq C$ and as $C \triangleleft G$, so by the Frattini argument we have that $G = CN_G(P)$. As U is a strongly closed subgroup of P, $N_G(P) \leq N_G(U)$ and thus $(p,q) \not\leq N_G(P)$. Since $V_p \leq C_G(P) \leq N_G(P)$ and $V_p \triangleleft G$, hence $V_p \triangleleft N_G(P)$. Thus $|N_G(P) : C \cap N_G(P)| \not\equiv 0$ (q). But then, since $|N_G(P) : C \cap N_G(P)| = |CN_G(P) : C| = |G : C| = |Q : C \cap Q|$, $Q \leq C = G$ follows. This is a contradiction, since $V \leq G = C_G(V_p)$.

End of the proof: Let $\mathcal{A} = \{A \mid N_G(A) < G, A \text{ p-group}, (p,q) \leq N_G(A)\}.$ Let K be a maximal element of A for the Thompson-ordering. Then $|N_G(K)|_p$ is maximal and among those with this property K is also of maximal order. As $A \neq \emptyset$, so such K exists. Then $K \leq P_1$ for a suitable Sylow p-subgroup P_1 of G. Let $x \in G$ such that $P_1^x = P$. Then $K^x \leq P$. Let $Z(P_1) \leq R \in Syl_p(N_G(K))$. Then $Z(P) \leq R^x \in Syl_p(N_G(K^x))$. Let $R^x \leq P_2 \in \operatorname{Syl}_p(G)$. Choose $t \in G$ so that $P_2^t = P$. Thus $R^{xt} \leq P$. Since $U \triangleleft P$, $Z(P) \cap U \neq 1$, thus $R^x \cap U \neq 1$, as well. As U is stongly closed in P, $(R^x \cap U)^t \leq R^{xt} \cap U$ and $R^{xt} \cap U$ is strongly closed in R^{xt} . It is enough to prove that the triple $(N_G(K^{xt}), R^{xt}, R^{xt} \cap U)$ satisfies the conditions of the Lemma. When we prove this, then $(p,q) \not\leq N_G(K^{xt})$ follows, contradicting our assumption. It is enough to prove that $(p,q) \not\leq N_G(R^{xt} \cap U)$. If |R| = |P|then we have that the triple $(N_G(K^{xt}), P, U)$ satisfies the conditions of the Lemma, and since $N_G(K^{xt}) < G$, by induction we get that $(p,q) \nleq N_G(K^{xt})$, contradicting the choice of K. Thus |R| < |P|. Then $N_P(R^{xt}) > R^{xt}$, and since $R^{xt} \cap U$ is strongly closed in R^{xt} , $N_G(R^{xt}) \leq N_G(R^{xt} \cap U)$.

So $|\mathcal{N}_G(R^{xt} \cap U)|_p > |\mathcal{N}_G(K^{xt})|_p = |R|$. As $\mathcal{N}_G(R^{xt} \cap U) \neq G$, thus $(p,q) \not\leq \mathcal{N}_G(R^{xt} \cap U)$, by the maximality of K in the Thompson ordering. The proof is complete.

For the proof of Theorem 2.4 we will need the description of irreducible characters of minimal non-nilpotent groups. As we did not find any reference to it in the literature, for the sake of selfcontainedness we include it here.

Lemma 33. Let G be a (p,q)-group, $P \in \operatorname{Syl}_p(G)$, $Q \in \operatorname{Syl}_q(G)$, $|Q| = q^n$. Then G has exactly q^n linear characters.

- (i) If P is abelian, then all other characters in Irr(G) are of degree q. They are induced from nontrivial characters of the unique index q subgroup of G. There are $(|P|-1)q^{n-2}$ such characters.
- (ii) If P is extraspecial, then $|P| = p^{2m+1}$, where $2m \equiv o(p) \pmod{q}$. $P/\mathbb{Z}(P)Q$ is a (p,q)-group of type (i). So it has $(p^{2m}-1)q^{n-2}$ irreducible characters of degree q. The p-1 irreducible characters of degree p^m of P can be extended to G giving $(p-1)q^n$ irreducible characters of degree p^m .
- (iii) If P is special and nonabelian, then if $|Z(P)| = p^k$ then Z(P) has $\frac{p^k-1}{p-1}$ maximal subgroups. By factoring with one of them we get a (p,q)-group of type (ii). The union of inverse images of these characters give Irr(G).

Proof. As G' = P, $|G: G'| = q^n$, so G has exactly q^n linear characters. Let $H = P(x^q)$. Then |G: H| = q and H is normal in G.

- Ad (i): If P is abelian, then so is H, so if $\chi \in Irr(G)$ nonlinear, then $\chi_H = \sigma_1 + ... + \sigma_q$ and $\chi = \sigma_i^G$ for i = 1, ..., q. So $\chi(1) = q$ and χ is induced from exactly q linear characters of H. As $|G| = |P|q^n = q^n + q^2(|P| 1)q^{n-2}$, we get that each nontrivial character of H that does not contain P in its kernel is induced to Irr(G).
- Ad (ii): If P is extraspecial, then $|P| = p^{2m+1}$. As Q acts irreducibly on P/Z(P), by Lemma 3.10 in Chapter II. of [6] we get that $2m = o(p) \pmod{q}$. The p-1 faithful irreducible characters of P are of degree p^m , they are 0 outside Z(P), so they are G-invariant, and as (|P|, |G:P|) = 1, they can be extended to G. By Gallagher's theorem, se e.g. [7], they can be extended in q^n ways. This way we get $(p-1)q^n$ irreducible characters of G. By taking into consideration those of degree 1 and q the sum of squares of the degrees gives:

$$q^{n} + q^{2}(p^{2m} - 1)q^{n-2} + p^{2m}(p-1)q^{n} = q^{n}p^{2m+1} = |G|,$$

so we determined all Irr(G).

Ad (iii): We calculate the sum of squares of the irreducible characters we produced so far: $q^n+q^2(p^{2m}-1)q^{n-2}+p^{2m}\frac{p^k-1}{p-1}(p-1)q^n=q^np^{2m+k}=|G|$, so we produced the whole $\mathrm{Irr}(G)$.

4 Proofs of the main results

Now we prove Theorem 2.1:

Proof of Thorem 2.1. (i) \rightarrow (ii) is trivial.

(ii) \rightarrow (iii): We use induction on |G|. The following argument is similar to one in the last part of the proof of Theorem 1 in [4]. For the sake of selfcontainedness, we repeat it here.

Let $A \triangleleft P$ be an abelian normal subgroup in P such that $\exp(A) \leq p$ if p > 2, and $\exp(A) \leq 4$ if p = 2, and A is maximal with these properties.

(a) If
$$A \leq Z(P)$$
:

then according to Alperin's theorem [1], $\Omega_j(P) \leq \operatorname{Z}(P)$, where j=1 if p>2 and j=2 if p=2. Then A is strongly closed in P, as if we take two elements a and a^x of order p or of order q in A and P, then they are conjugate in P, and as A is normal in P, we get that $a^x \in A$, too. Let $N = \operatorname{N}_G(A)$. If N < G, then as $P \in \operatorname{Syl}_p(N)$, by induction we get that $(p,q) \not\leq N$, and by Lemma 3.2, $(p,q) \not\leq G$. So we may assume that $\operatorname{N}_G(A) = G$. Then $P \leq \operatorname{C}_G(A) \triangleleft G$. As for each $a \in A^\#$ for the conjugacy class $\operatorname{K}_G(a)$ of a in G and for the conjugacy class $\operatorname{K}_P(a)$ in G in G in G and this means that $G \not\geq (p,q)$ in cases G and G and G and G and this means that $G \not\geq (p,q)$ in cases G and G and G and G and this means that $G \not\geq (p,q)$ in cases G and G and G and G and this means that G and G and G and G and G and this means that G and G and G and G and G and G and this means that G and G

(b) If
$$A \not\leq \operatorname{Z}(P)$$
:

then $A \cap Z(P) < A$. Thus $A/A \cap Z(P)$ contains a central subgroup of $P/A \cap Z(P)$ of order p. Let A_1 be its inverse image in A. According to our assumption, $A_1 = \langle A \cap Z(P), x \rangle$, where o(x) = p or o(x) = 4 and $x \notin Z(P)$. A_1 is strongly closed in P as if $a_1 \in A_1$ and $a_1^u \in P$, then by assumption a_1^u is conjugate to a_1 in P. But as $A_1 \triangleleft P$, $a_1^u \in A_1$. If

 $N_1 = N_G(A_1) < G$, then as $P \le N_1$, by induction we have that $(p,q) \not \le N_1$. Then, by Lemma 3.2, $(p,q) \not \le G$. So, we may assume that $N_1 = G$. Then $C_G(A_1) \triangleleft G$ and $A \cap Z(P) \le Z(G)$, as if $a \in A \cap Z(P)$ and $g \in G$ then $a^g \in A_1 \le P$, so by assumption there is a $u \in P$ such that $a^g = a^u$ and as $a \in A \cap Z(P)$ $a^u = a$. So, $|G : C_G(a)| = 1$ and thus $A \cap Z(P) \le Z(G)$ and $C_G(A_1) = C_G(x)$. Let $g \in G$, then $x^g \in A_1 \le P$, so there exists an $u \in P$ such that $x^g = x^u$, therefore the conjugacy classes $K_G(x)$ and $K_P(x)$ coincide and thus $|G : C_G(A_1)| = |G : C_G(x)| = |P : C_P(x)| > 1$. So, $C_G(A_1)$ is a proper normal subgroup of p-power index in G and it is contained in some normal subgroup G_1 of index p. By Lemma 3.1, applied for $H = P \in \operatorname{Syl}_p(G)$ if we take K to be the set of elements of P of order p or q, then induction gives that $q \in G$ for every prime $q \ne p$. As a $q \in G$ group is generated by its Sylow q-subgroups, $q \in G$ either.

- (iii) \rightarrow (iv): Let T be a p-subgroup of G. Let $N = N_G(T)$. Let $q \in \pi(N) \setminus \{p\}, \ Q \in \operatorname{Syl}_q(N)$. If $[Q,T] \neq 1$, then $(p,q) \leq QT$, which cannot happen by assumption. Hence (iv) follows.
- (iv) \rightarrow (i): The proof is similar to the second part of Lemma 5 in [4]. For the sake of selfcontainedness we repeat it here.

Let $a,b \in P$ such that $a=b^x$ for some $x \in G$. By the thereom of Alperin, see e.g. Chapter 7, Theorem 2.6 in [5], there exist Sylow p-subgroups $Q_1,...,Q_n$ of G, elements $x_1,...,x_n$ with $x_j \in \mathcal{N}_G(P \cap Q_j)$, and $y \in \mathcal{N}_G(P)$ such that $b \in P \cap Q_1$, $b^{x_1...x_{j-1}} \in P \cap Q_j$, $x = x_1...x_ny$ and $\mathcal{N}_P(P \cap Q_j) \in \mathrm{Syl}_p(\mathcal{N}_G(P \cap Q_j))$ for j = 1,...,n. Let $\mathcal{N}_j = \mathcal{N}_G(P \cap Q_j)$, $C_j = \mathcal{C}_G(P \cap Q_j)$, $P_j = \mathcal{N}_P(P \cap Q_j)$, j = 1,...,n.

So $N_j = C_j(P \cap N_j)$ and hence $x_j = y_j z_j$, where $y_j \in C_j$ and $z_j \in P \cap N_j$. It is easy to see that that $a = b^x = b^{z_1 \dots z_n y}$. $N_G(P) = C_G(P)P$, so $y = cz_{n+1}$, where $c \in C_G(P)$, $z_{n+1} \in P$. Thus $a = b^x = b^{z_1 \dots z_{n+1}}$, which means that a and b are conjugate in P. The proof is complete.

Now we prove Theorem 2.2:

Proof of Theorem 2.2. Let $H = \mathcal{O}_{p',p}(G)$, $R = H \cap P$. As G is p-constrained, $\mathcal{C}_G(R) \leq H$. By the Frattini argument, $G = \mathcal{O}_{p'}(G)\mathcal{N}_G(R)$. Let $q \neq p$ prime, $Q \in \mathrm{Syl}_q(\mathcal{N}_G(R))$. Then $QR = Q \times R$, as $(p,q) \not\leq QR$. Hence $Q \leq \mathcal{C}_G(R) \leq H$, and so $Q \leq \mathcal{O}_{p'}(G)$. Thus $G = \mathcal{O}_{p'}(G)P$.

Now we prove Theorem 2.3:

Proof of Theorem 2.3. (i) \rightarrow (ii): Repeating the argument of the previous proof one gets that $O^{q'}(G) \leq O_{p'}(G)$. As $O^{q'}(G) \triangleleft G$ and it is a p'-group, so $O^{q'}(G)P$ is a subgroup of G having normal p-complement.

(ii) \rightarrow (i): If $O^{q'}(G)P$ has a normal p-complement, then $O^{q'}(G)$ is a p'-subgroup. If U is a (p,q)-group in G, then $U \leq O^{q'}(U) \leq O^{q'}(G)$. As $O^{q'}(G)$ is a p'-subgroup, this is a contradiction. So, the proof is complete.

Remark 41. In Theorem 2.3 the condition that G is p-constrained cannot be omitted. Take $G = A_5$, $P \in \mathrm{Syl}_5(G)$. Then $(5,3) \not\leq G$, since 25 does not divide |G|. As G is simple, $G = \mathrm{O}^{3'}(G) = \mathrm{O}^{3'}(G)P$.

Now we prove Theorem 2.4:

Proof of Theorem 2.4. We use induction on |G|. We assume that G is a finite p-constrained group of minimal order that has character $\chi \in \operatorname{Char}(G)$ satisfying the conditions in our Theorem such that the assertion is not yet known. We may assume that (ii) is false for G, and we have to prove that for G (i) holds. As (ii) does not hold for G, so it cannot hold for any proper subgroup H of G. So by induction (i) holds for all such H. Using α) and β) we can deduce that every constituent of χ_P is linear, and thus $P' \leq \operatorname{Ker}(\chi)$. By γ), P is abelian. As G is p-constrained, so P' = 1 implies that G is p-solvable. By the choice of G we get immidiately that $\pi(G) = \{p,q\}$ for a suitable prime $q \neq p$. This gives that G is solvable, hence G is also q-constrained.

We have to prove that $P \triangleleft G$. As $\pi(G) = \{p,q\}$, this means that G is q-nilpotent. As G is q-constrained, our Theorem 2.1 (iii) and Theorem 2.2 implies, (even without the use of the transfer), that either $P \triangleleft G$ or G is a (q,p)-group. To finish the proof, it is enough to show that the second possibility cannot occur. Assume that G is a (q,p)-group. Let m be $o(q) \pmod{(p)}$. Using β) an appeal to Lemma 33. shows that χ can have a nonlinear constituent only in the case when m is even, say m=2a. The degree of a nonlinear irreducible constituent of χ is then q^a . Since $q^a+1\equiv 0\pmod{(p)}$, $q^a=pl-1$, for a suitable natural number l. From this one deduces that either $q^a\geq 2p-1$ or $q^a=p-1$ and q=2. If $q^a=p-1$, p=2 cannot occur. As (ii) is not true in G, case $q^a=p-1$ cannot hold, either. So χ has only linear constituents. But then $G'\leq \mathrm{Ker}(\chi)$, so by γ) G has to be abelian in this case, contradicting the assumption that G is a (q,p)-group. This completes the proof.

Now we give an example showing that in α) 2p-2 cannot be replaced by 2p-1.

Let p and q = 2p - 1 be primes, where $p \ge 7$. E.g. p = 7 and q = 13. Let G_0 be a (q, p)-group of order q^3p with extraspecial Sylow q-subgroup. In this case $o(q) \pmod{p} = 2$, so such a group exists. Then $Q_0 = G'_0 \in \operatorname{Syl}_q(G_0)$, and G_0 has a character χ_0 of degree q which is irreducible and faithful. So α) is not satisfied for χ_0 , as $\chi_0(1) = 2p - 1$. Since χ_0 is faithful γ) holds. As all proper subgroups of G_0 , except for Q_0 , are abelian, and χ_{Q_0} is irreducible, for χ_0 β) also holds. (i) is not true for G_0 . But p is not a Fermat prime either, as then $p = 2^{2^k} + 1$ would hold and $q = 2p - 1 = 2^{2^k + 1} + 1 \equiv 0 \pmod{3}$ so (ii) cannot hold, either.

Remark 42. This theorem extends a well-known result of N. Itô ([8], see also [7]).

It can be deduced from our statement if we replace 2p-2 by p-1 in α) and we assume also γ). Then β) is automatically satisfied. If P is not normal in G, then $\chi(1)=p-1$ and $\chi\in {\rm Irr}(G)$ also holds.

On the other hand the assumption β) is vital for our proof as if case (i) holds, then, by a theorem of N. Itô (see e.g. [7]), $(\chi(1), p) = 1$ holds for every irreducible character $\chi \in Irr(G)$.

Remark 43. The conditions of our Theorem 2.4 however do not guarantee that if P is not normal in G, then χ should be irreducible. Let us take $p=2^{2^k}+1$ to be a Fermat-prime. Let G be a (2,p)-group of order $2^{2^{k+1}+1}p$ with extraspecial Sylow 2-subgroup and Sylow p-subgroup P of order p. Then G has a faithful irreducible character χ of degree p-1. Let us choose a character $\sigma \in \operatorname{Char}(G)$ with $p-1 < \sigma(1) \leq 2p-2$, and $(\sigma,\chi) = 1$ and all other constituents of σ are choosen to be linear. Then σ satisfies α , β and γ , but σ is not irreducible.

Acknowledgement

Research supported by National Science Foundation Grant No. T022925.

References

- [1] J.L. Alperin, Centralizers of abelian normal subgroups of p-groups, J. Algebra 1 (1964), 110–113.
- [2] K. Corrádi, On certain properties of centralizers hereditary to the factor group, Publ. Math. (Debrecen) **37** (1990), 203–206.
- [3] K. Corrádi and E. Horváth, Steps towards an elementary proof of Frobenius' theorem, Comm. Algebra 24 (1996), 2285–2292.

- [4] K. Corrádi and E. Horváth, Normal π -complement theorems, Arch. Math. (Basel) **71** (1998), 262–269.
- [5] D. Gorenstein, "Finite groups", Chelsea Publ. Comp., New York 1980.
- [6] B. Huppert, "Endliche Gruppen", Springer-Verlag, Berlin 1967.
- [7] I.M. Isaacs, "Character theory of finite groups", Dover Publ., Inc., New York 1994.
- [8] N. Itô, On a theorem of H.F. Blichfeldt, Nagoya Math. J. 5 (1953), 75–77.

Received 25 January 1999