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Abstract

In the first part of this paper we prove without using the transfer
or characters the equivalence of some conditions, each of which would
imply p-nilpotence of a finite group G. The implication of p-nilpotence
also can be deduced without the transfer or characters if the group is
p-constrained. For p-constrained groups we also prove an equivalent
condition so that O% (G)P should be p-nilpotent. We show an example
that this result is not true for some non-p-constrained groups.

In the second part of the paper we prove a generalization of a
theorem of It6 with the help of the knowledge of the irreducible
characters of the minimal non-nilpotent groups.
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1 Definitions and known results

We know the remarkable theorems of Frobenius which tell that in
Theorem 2.1 (i) and (iv) both imply that the finite group G has a
normal p-complement. All existing proofs of them use the transfer
homomorhism or characters.

The well-studied minimal non-nilpotent groups, i.e. non-nilpotent
groups, each of whose subgroups are nilpotent, sometimes are called
Schmidt groups or (p, q)-groups. They can be described without using the
transfer, see 5.1 Satz and 5.2 Satz in pp. 280-281 of [6]. Let G be a minimal
non-nilpotent group. Then it can be proved without using the transfer
or characters, that
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1. G is solvable.

2. |G| is divisible only by 2 primes, say |G| = p®q’.

3. G'=P e Syl,(G).

4. If p > 2, then exp(P) = p; if p = 2, then exp(P) < 4; exp(Z(P)) = p in
all cases.

5. P is either abelian or P’ = ®(P) = Z(P) < Z(G).

6. If Q € Syl (G), then @ is cyclic; and if Q = (z), then (27) < Z(G).

If P is abelian, then @ acts irreducibly on P; if P is nonabelian, then
Q@ acts irreducibly on P/Z(P). If P is abelian, then P is of expo-
nent p; and if P is nonabelian, then P/Z(P) is also of exponent p. So,
they can be considered as vector spaces over GF(p). Their dimension
is o(p)(mod(q)), which is even in the nonabelian case.

8. (@ is generated by its Sylow g-subgroups.

These groups are non-p-nilpotent. It can also be proved using the transfer
or characters that a group is p-nilpotent if and only if, it does not contain
such a subgroup.

We shall use the following:

Notation 11. We shall write (p,q) € G if the group G does not contain a
(p, q)-group, otherwise we write (p,q) < G.

Let us recall the definition of Thompson-ordering:

Definition 12. Let GG be a finite group. Let P be a property of subgroups
of G. Let A = {A] p-subgroup of G, Ng(A) < G, A p-group, Ng(A) has
the property P}. We tell for A1, A2 € A that A; is smaller than As in
the Thompson-ordering if either [Ng (A1), < [Ng(Az2)lp, or [Ng(A1)|, =
NG (A2)|p and [A1] < |As].

Definition 13. Let P € Syl,(G). A subgroup U < P is called strongly
closed if for every u € U if u* € P then u” € U.

2 Main results

The aim of this paper is to prove that the equivalence of the following four
conditions can be proved without the use of transfer or characters:
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Theorem 21. Let G be a finite group, let P € Syl,(G). Then the following
are equivalent:
(i) If z,y € P are G-conjugate, then they are conjugate already in P;
(ii) Ifx,y € P of order p or 4 and are G-conjugate, then they are conju-
gate already in P;

(il) (p,q) £ G for every prime q # p;
(iv) For every p-subgroup U < G, Ng(U)/Cq(U) is a p-group.

As a corollary we get:

Theorem 22. Let G be a p-constrained group, P € Syl,(G). If any of the
conditions of the above theorem holds for G, then one can deduce without
using the transfer that G has a normal p-complement.

As an application of Theorem 2.1 we prove also the following:

Theorem 23. Let G be a finite group, let p # q be primes with p,q € 7(Q).
Let P € Syl,(G) and let 07 (G) denote the subgroup of G generated by the
q-elements of G. If G is p-constrained then the following are equivalent:

(i) (rg) £G.
(i) O7(G)P has a normal p-complement.

Another application of Theorem 2.2 is to prove without using the transfer
the following generalization of a theorem of It6:

Theorem 24. Let G be a finite p-constrained group, let P € Syl,(G). Let
us suppose that x is a character of G satisfying the following conditions:
B) for every subgroup H < G, xpg does not have a constituent of
degree p,

7) Ker(x) = 1.

Then one of the following two possibilities holds:
(i) P is abelian and P is normal in G;

(ii) p is a Fermat-prime and one of the constituents of x has degree at
least p — 1.
The inequality in «) is sharp. There is a solvable group Gy having a
character xo € Char(Gy) satisfying 3) and ) with degree xo(1) = 2p — 1,
such that for this pair the assertion of the Theorem does not hold.
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3 Preliminary lemmas

In the proof of Theorem 2.1 we will need the following lemma, which is
Lemma 2 in [4].

Lemma 31. Let G be a group with H € Hall(G) and with the property
that every m-subgroup Y of G can be conjugated into H. Let IC be a class of
elements of H, which is closed under conjugation inside H with elements of
G such that if two elements of KC are conjugate in G then they are already
conjugate in H. Then if Gy <G and |G : G1| = q, where q € 7, then for
Hy = HN G it holds that each pair of elements of Hi NI that are conjugate
in G1 are already conjugate in Hy. [

For the proof of Theorem 2.1 we will also need the following lemma, which
generalizes both Lemma 5 in [4] and Lemma 3.2 in [3].

Lemma 32. Let ¢ € n(G)\{p} be a fived prime, P € Syl,(G), U < P
abelian and strongly closed in P. Then if (p,q) £ Ng(U) then (p,q) £ G,
as well.

Proof. Let G be a counterexample of minimal order.
First we prove that we may assume that O,(G) = 1.

Let O,(G) > 1 and let B<G be a p-subgroup. Let G = G/B, and the images
of U and P in this factor group let U and P, respectively. Then P € Syl,(G)
and the triple (G, P, U) satisfies the conditions set for (G, P,U). To see this
we have to show only that (p, q) € Ng(U) implies (p, q) £ Ng(U). Let M be
the inverse image of Nz(U) in G. Here M < G, since if U <G then UY < P,
and as U < P is strongly closed, UY = U would follow. This would imply
(p,q) £ Ng(U) = G, which is a contradiction. So M < G. But P < M
and Ng(U) = Nps(U). The triple (M, P,U) satisfies the conditions of the
Lemma. By induction (p,q) £ M. By [2], (p,q) £ M = Ng(U), as well.
Hence the conditions of the Lemma are satisfied by the triple (G, P,U) and
by induction (p,q) £ G.

Let V be a (p, ¢)-group in G. Then V' =V, € Syl,(V') and by the above
result, its image V in G is nilpotent. Hence V,, < B. There are two cases:

() UNOyG) =1,

(i) UNO,(G) +# 1.
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Ad (i): We know that U < P and we may assume that V,, < P, by replacing
V' with a suitable conjugate of it. Hence [U,V,] < U. On the other
hand as V}, < O,(G), [U,V,] < O0,(G)NU = 1.

Ad (ii): If U N O,(G) # 1, then we may choose B equal to it, because
UNO,(G) is normal in G as U is strongly closed. Hence V,, < B <U
by the above results. But U is abelian, so [V,,U] = 1 in this case,
too.

Hence in both cases (i) and (ii) [V, U] = 1. Let N = Ng(V,,). We claim
that N = G. If N < G then if we choose S € Syl,(IV) with the property
U < S, then the triple (N, S,U) satisfies the conditions of the Lemma. So
by induction (p,q) £ N. This contradicts the fact that V' < N. Thus V,,
is normal in G. Let C'= Cg(V}). Then C'<G. Let us choose Q € Syl (G)
so that it should contain a Sylow g¢-subgroup of V. Set L = C@Q. Then
PNL=PNC € Syl,(L) and PN C < P. Then the triple (L,P N L,U)
satisfies the conditions of the Lemma. Hence if L < G then by induction
(p,q) £ L, which is impossible as V' < L. Thus G = L = CQ. Since
P=PNL=PnNC, P<C and as C' <G, so by the Frattini argument
we have that G = CNg(P). As U is a strongly closed subgroup of P,
N¢(P) < Ng(U) and thus (p,q) £ Ng(P). Since V, < Cq(P) < Ng(P) and
Vp<@G, hence V,<N¢g(P). Thus [Ng(P) : CNNg(P)| # 0 (¢). But then, since
Na(P) : CNG(P)| = |CNG(P) : €| = G : C] = [CQ : C| = 1Q : C Q)
Q < C = G follows. This is a contradiction, since V"< G = Cg(V},).

End of the proof: Let A = {A| Ng(A) < G, A p-group, (p,q) < Ng(4)}.
Let K be a maximal element of A for the Thompson-ordering. Then [Ng(K)|,
is maximal and among those with this property K is also of maximal or-
der. As A # 0, so such K exists. Then K < P for a suitable Sylow
p-subgroup P; of G. Let x € G such that P = P. Then K* < P.
Let Z(P) < R € Syl (Ng(K)). Then Z(P) < R* € Syl,(Ng(K?)). Let
R* < Py € Sylp(G). Choose t € G so that P2t = P. Thus R* < P. Since
U<P,Z(P)NU # 1, thus R*NU # 1, as well. As U is stongly closed in P,
(R*NU) < R*™NU and R* NU is strongly closed in R*:. It is enough to
prove that the triple (Ng(K*'), R*, R* N U) satisfies the conditions of the
Lemma. When we prove this, then (p,q) £ Ng(K*!) follows, contradicting
our assumption. It is enough to prove that (p, ¢) £ Ng(R**NU). If |R| = | P|
then we have that the triple (Ng(K*!), P,U) satisfies the conditions of the
Lemma, and since Ng(K*') < G, by induction we get that (p, ¢) £ Ng(K*),
contradicting the choice of K. Thus |R| < |P|. Then Np(R*) > R*,
and since R* N U is strongly closed in R*, Ng(R®) < Ng(R®™ nU).
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So INg(R*™ NU)|, > |INg(K*)|, = |R|. As Ng(R*" NU) # G, thus
(p,q) £ Ng(R* NU), by the maximality of K in the Thompson ordering.
The proof is complete. [ ]

For the proof of Theorem 2.4 we will need the description of irreducible
characters of minimal non-nilpotent groups. As we did not find any reference
to it in the literature, for the sake of selfcontainedness we include it here.

Lemma 33. Let G be a (p,q)-group, P € Syl (G), Q € Syl (G), |Q| = ¢".
Then G has exactly " linear characters.

(i) If P is abelian, then all other characters in Irr(G) are of degree q.
They are induced from nontrivial characters of the unique index q
subgroup of G. There are (|P| —1)¢" 2 such characters.

(ii) If P is extraspecial, then |P| = p*™ 1 where 2m = o(p)(mod(q)).

P/Z(P)Q is a (p,q)-group of type (i). So it has (p*™ — 1)g" 2
irreducible characters of degree q. The p — 1 irreducible characters
of degree p™ of P can be extended to G giving (p — 1)q" irreducible
characters of degree p™.

(iii) If P is special and nonabelian, then if |Z(P)| = p* then Z(P) has ;;“%11
mazimal subgroups. By factoring with one of them we get a (p,q)-
group of type (ii). The union of inverse images of these characters

give Irr(G).

Proof. As G' = P, |G : G'| = ¢", so G has exactly ¢" linear characters.
Let H = P(z%). Then |G : H| = q and H is normal in G.

Ad (i): If P is abelian, then so is H, so if x €lrr(G) nonlinear, then yg =
o1+ ..+0,and x = al-G fori = 1,...,q. So x(1) = q and x is
induced from exactly ¢ linear characters of H. As |G| = |P|¢" =
q" + ¢*(|P| — 1)¢" 2, we get that each nontrivial character of H that
does not contain P in its kernel is induced to Irr(G).

Ad (ii): If P is extraspecial, then |P| = p*™*!. As Q acts irreducibly on
P/Z(P), by Lemma 3.10 in Chapter II. of [6] we get that 2m =
o(p)(mod(q)). The p — 1 faithful irreducible characters of P are of
degree p™, they are 0 outside Z(P), so they are G-invariant, and
as (|P|,|G : P|) = 1, they can be extended to G. By Gallagher’s
theorem, se e.g. [7], they can be extended in ¢" ways. This way we
get (p—1)q"™ irreducible characters of G. By taking into consideration
those of degree 1 and g the sum of squares of the degrees gives:
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¢"+ (P = 1)g" 2+ " (p = 1)g" = ¢ = |G,
so we determined all Irr(G).
Ad (iii): We calculate the sum of squares of the irreducible characters we

produced so far: q”+q2(p2m—1)q”—2+p2m1j%11(p_1)qn — grpPmth =
|G|, so we produced the whole Irr(G). |

4 Proofs of the main results

Now we prove Theorem 2.1:

Proof of Thorem 2.1. (i) — (ii) is trivial.

(ii) — (iii): We use induction on |G|. The following argument is similar
to one in the last part of the proof of Theorem 1 in [4]. For the sake of
selfcontainedness, we repeat it here.

Let A< P be an abelian normal subgroup in P such that exp(A4) < p if
p > 2, and exp(A) < 4 if p =2, and A is maximal with these properties.

(a) If A < Z(P):

then according to Alperin’s theorem [1], Q;(P) < Z(P), where j = 1ifp > 2
and j = 2 if p = 2. Then A is strongly closed in P, as if we take two elements
a and a” of order p or of order 4 in A and P, then they are conjugate in P,
and as A is normal in P, we get that a® € A, too. Let N = Ng(A). If N < G,
then as P € Syl,(NV), by induction we get that (p,q) £ N, and by Lemma
3.2, (p,q) £ G. So we may assume that Ng(A) = G. Then P < Cg(A)<G.
As for each a € A% for the conjugacy class Kg(a) of a in G and for the
conjugacy class Kp(a) in P it holds that Kg(a) = Kg(a) NP = Kp(a) = a,
as A< G and A < Z(P), so |G : Cg(a)] = |P : Cp(a)] = 1, and we get
that A < Z(G). Thus, if p > 2, then Q1(P) < A < Z(G); if p = 2, then
Q2(P) < Z(G); and this means that G 2 (p,q) in cases p > 2 and p = 2,
either, for every prime divisor ¢ # p of G.

(b) If A £ Z(P):

then ANZ(P) < A. Thus A/A N Z(P) contains a central subgroup of
P/ANZ(P) of order p. Let A; be its inverse image in A. According to
our assumption, A1 = (A N Z(P),x), where o(z) = p or o(z) = 4 and
x & Z(P). Aj is strongly closed in P as if a; € A; and af € P, then
by assumption af is conjugate to a; in P. But as Ay < P, af € A;. If
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N; =Ng(A1) < G, then as P < Ny, by induction we have that (p,q) € Ni.
Then, by Lemma 3.2, (p,q) £ G. So, we may assume that N; = G. Then
Cq(A41) <G and ANZ(P) < Z(G), as if a € ANZ(P) and g € G then
a9 € A1 < P, so by assumption there is a v € P such that a9 = a“ and
as a € ANZ(P) a* = a. So, |G : Cg(a)| = 1 and thus ANZ(P) < Z(G)
and Cg(A41) = Cg(z). Let g € G, then 29 € A; < P, so there exists
an u € P such that x9 = z%, therefore the conjugacy classes Kg(z) and
Kp(z) coincide and thus |G : Cg(A1)| = |G : Co(x)] = |P : Cp(x)] > 1.
So, Cg(A1) is a proper normal subgroup of p-power index in G and it is
contained in some normal subgroup G of index p. By Lemma 3.1 , applied
for H = P € Syl,(G) if we take K to be the set of elements of P of order
p or 4, then induction gives that (p,q) € G; for every prime ¢ # p. As a
(p, q)-group is generated by its Sylow g-subgroups, (p,q) £ G, either.

(iii) — (iv): Let T be a p-subgroup of G. Let N = Ng(T'). Let ¢ €
m(N)\{p}, @ € Syl,(N). If [Q,T] # 1, then (p,q) < QT, which cannot
happen by assumption. Hence (iv) follows.

(iv) — (i): The proof is similar to the second part of Lemma 5 in [4].
For the sake of selfcontainedness we repeat it here.

Let a,b € P such that a = b* for some x € G. By the thereom of Alperin,
see e.g. Chapter 7, Theorem 2.6 in [5], there exist Sylow
p-subgroups Q1,...,Qn of G, elements x1,...,x, with z; € Ng(P N Q;),
and y € Ng(P) such that b € PN Qq, b* %1 € PNQj, = T1..T,Y
and Np(P N Qj) €Syl,(Na(P NQj)) for j =1,...,n. Let Nj=Ng(PNQ;),
C; = Ca(PN Qj), P; = Np(PN Qj), j=1,..,n.

So N; = Cj(PNNj) and hence x; = y;z;, where y; € Cj and z; € PNN;.
It is easy to see that that a = b* = b*1-*"Y. Ng(P) = Cq(P)P,soy = czp+1,
where ¢ € Cg(P), zp41 € P. Thus a = b* = b***+1, which means that a
and b are conjugate in P. The proof is complete. [

Now we prove Theorem 2.2:

Proof of Theorem 2.2. Let H = Oy ,(G), R = HNP. As G is
p-constrained, Cg(R) < H. By the Frattini argument, G = O,/ (G)Ng(R).
Let g # p prime, Q € Syl (Ng(R)). Then QR = Q X R, as (p,q) £ QR.
Hence @ < Cg(R) < H, and so Q < Oy (G). Thus G = Oy (G)P. |
Now we prove Theorem 2.3:

Proof of Theorem 2.3. (i) —(ii): Repeating the argument of the previ-

ous proof one gets that 07 (G) < 0,/(G). As 04 (G) <G and it is a p/-group,
so 07 (G)P is a subgroup of G having normal p-complement.
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(ii)—(i): If O7(G)P has a normal p-complement, then 07 (G) is a p'-
subgroup. If U is a (p, ¢)-group in G, then U < 07 (U) < O7(G). As 07 (Q)
is a p/-subgroup, this is a contradiction. So, the proof is complete. [

Remark 41. In Theorem 2.3 the condition that G is p-constrained cannot
be omitted. Take G = As, P € Syl;(G). Then (5,3) £ G, since 25 does not
divide |G|. As @ is simple, G = 0¥ (G) = 0% (G)P.

Now we prove Theorem 2.4:

Proof of Theorem 2.4. We use induction on |G|. We assume that G is a
finite p-constrained group of minimal order that has character x € Char(G)
satisfying the conditions in our Theorem such that the assertion is not yet
known. We may assume that (ii) is false for G, and we have to prove that
for G (i) holds. As (ii) does not hold for G, so it cannot hold for any proper
subgroup H of G. So by induction (i) holds for all such H. Using «) and f3)
we can deduce that every constituent of xp is linear, and thus P’ < Ker(y).
By ), P is abelian. As G is p-constrained, so P’ = 1 implies that G is
p-solvable. By the choice of G we get immidiately that 7(G) = {p, ¢} for
a suitable prime ¢ # p. This gives that G is solvable, hence G is also
g-constrained.

We have to prove that P <G. As 7(G) = {p,q}, this means that G
is g-nilpotent. As G is g-constrained, our Theorem 2.1 (iii) and Theorem
2.2 implies, (even without the use of the transfer), that either P <G or G
is a (q,p)-group. To finish the proof, it is enough to show that the
second possibility cannot occur. Assume that G is a (g, p)-group. Let m be
o(q) (mod (p)). Using () an appeal to Lemma 33. shows that x can have
a nonlinear constituent only in the case when m is even, say m = 2a. The
degree of a nonlinear irreducible constituent of x is then ¢%. Since ¢*+1 =0
(mod (p)), ¢* = pl — 1, for a suitable natural number [. From this one de-
duces that either ¢ > 2p—1lorg*=p—landq=2.If ¢ =p—-1,p=2
cannot occur. As (ii) is not true in G, case ¢ = p—1 cannot hold, either. So
X has only linear constituents. But then G’ < Ker(x), so by v) G has to be
abelian in this case, contradicting the assumption that G is a (g, p)-group.
This completes the proof. [

Now we give an example showing that in «) 2p — 2 cannot be replaced by
2p — 1.

Let p and ¢ = 2p — 1 be primes, where p > 7. E.g. p =7 and ¢ = 13.
Let G be a (g, p)-group of order ¢>p with extraspecial Sylow g-subgroup. In
this case o(g)(modp) = 2, so such a group exists. Then Qo = Gy € Syl (Go),
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and Gy has a character xg of degree ¢ which is irreducible and faithful. So «)
is not satisfied for xo, as xo(1) = 2p — 1. Since o is faithful ) holds. As all
proper subgroups of Gp, except for (Jg, are abelian, and xg, is irreducible,
for xo ) also holds. (i) is not true for Go. But p is not a Fermat prime
either, as then p=22"+1 would hold and ¢=2p—1= 22+141=0(mod(3))
so (ii) cannot hold, either.

Remark 42. This theorem extends a well-known result of N. Ito ([8], see
also [7]).

It can be deduced from our statement if we replace 2p — 2 by p — 1 in
«) and we assume also 7). Then () is automatically satisfied. If P is not
normal in G, then x(1) =p — 1 and x € Irr(G) also holds.

On the other hand the assumption f3) is vital for our proof as if case
(1) holds, then, by a theorem of N. Ito (see e.g. [7]), (x(1),p) = 1 holds for
every irreducible character x € Irr(G).

Remark 43. The conditions of our Theorem 2.4 however do not guarantee
that if P is not normal in G, then y should be irreducible. Let us take
p= 22" 1 1 to be a Fermat-prime. Let G be a (2, p)-group of order 22k+1+1p
with extraspecial Sylow 2-subgroup and Sylow p-subgroup P of order p.
Then G has a faithful irreducible character x of degree p — 1. Let us choose
a character o € Char(G) with p —1 < o(1) < 2p — 2, and (0,x) = 1 and
all other constituents of o are choosen to be linear. Then o satisfies «), 3)
and ), but ¢ is not irreducible.
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