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Abstract

Ring-like operations are introduced in pseudocomplemented semi-
lattices in such a way that in the case of Boolean pseudocomplemented
semilattices one obtains the corresponding Boolean ring operations.
Properties of these ring-like operations are derived and a characteriza-
tion of Boolean pseudocomplemented semilattices in terms of these
operations is given. Finally, ideals in the ring-like structures are
defined and characterized.
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1. INTRODUCTION

First we will briefly report on some results (obtained in [2] and [5]) concern-
ing ring-like operations in orthomodular lattices since ring-like operations
will be introduced in pseudocomplemented semilattices in a similar way and
we will obtain also similar results.

It is well-known that there is a natural bijection between Boolean
algebras and Boolean rings. This correspondence between certain lattice
structures and certain term-equivalent ring structures is very useful. For
instance, congruence permutability of Boolean algebras follows immediately
from that of rings (resp. groups). So it is natural to ask how a ring-like
structure can be introduced in generalizations of Boolean algebras. In [1]
and [3] a ring-like structure was introduced in orthomodular lattices and also
in more general structures. Since pseudocomplemented semilattices can also
be viewed as generalizations of Boolean algebras one may try to introduce a
ring-like structure in pseudocomplemented semilattices. This is the aim of
the present paper.

2. RING-LIKE OPERATIONS IN ORTHOMODULAR LATTICES

An orthomodular lattice is an algebra (L,V,A,,0,1) of type (2,2,1,0,0)
such that (L, V,A,0,1) is a bounded lattice and additionally we have:
(i) (@) ==,
(i) (zvy) =2 Ay,
(i) zva' =1,
(iv) z<y=y=zV(yArz),
for all x,y € L.

In the following let L be an arbitrary, fixed orthomodular lattice. On
every Boolean subalgebra of L one can define ring operations + and - by

zty:=(@ANy)V (@ ANy)=(Vy) A VYY),
zy=zAy=(xVy AxVy)A (@ Vy).
We now extend these operations from the Boolean subalgebras of L to L by
defining
1y = (@AyY) V(' Ay),
T4y = (xVy A VY),
T 1Yy =AYy,
zoy:=(xVy) Al Vy)A@E V),
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for all x,y € L. Then the following theorem holds:

Theorem 1. For arbitrary, fized i,j € {1,2} the following properties are
equivalent:

(i) L is a Boolean algebra;
+1 = +2;
1023
+; 1s associative;
-9 18 associative;
-j 18 distributive with respect to +;;
For every (a,b) € L? the equation a +; x = b has at most one
solution;
(viii)  For every (a,b) € L? the equation a +; x = b has exactly one
solution;
(ix) For every (a,b) € L? the equation a +; x = b has at least one

solution.

Proof. See [2] and [5]. |

3. RING-LIKE OPERATIONS IN PSEUDOCOMPLEMENTED SEMILATTICES

A pseudocomplemented meet-semilattice (with zero) is an algebra S =
(S, A,*,0) of type (2,1,0), where (S, A,0) is a meet-semilattice with small-
est element 0 and where each z € S has a so-called pseudocomplement x*,
that is a greatest element y € S with the property x Ay = 0, i. e. for
xz,y € Sit holds z Ay = 0iff y < z*. (The concept of a pseudocomplemented
join-semilattice (with one) can be defined dually.)

In this section let S denote an arbitrary, fixed pseudocomplemented
meet-semilattice and let a, b, ¢ be arbitrary, fixed elements of S.

Put alUb:= (a* Ab*)* and 1 := 0*.
The following facts are well-known (cf. [4]):

(i) (*,*) is a Galois correspondence between (S, <) and (5, <),
(i) a<b=a* >b*,

(iil)) a < a*,
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a*** — a*’

0" =0,

€ End S;

0o := ker™ € ConS,

BA(S) := (5*,U,A,*,0,1) is the greatest Boolean subalgebra
of (S,U,A*,0,1).

We call BA(S) the Boolean algebra induced by S.

Remark. (i) 0y € Con(S,U, A,*,0,1) and from the homomorphism theorem
it follows that (S,U, A,*,0,1)/6p = BA(S).

(ii) One can show that the class of all pseudocomplemented meet-
semilattices forms a variety which can be defined by the following laws:

N =
~—

~— — ~— ~— ~— ~—

5
6
(7

/\/\/‘&/‘\/\/\

(xAY)Nz=zA(yAz),

TANYy=yANz,
rTNT =2,
z A0 =0,

(xAY)* A (xAy*)* =¥,
0** = 0,

T Az™ = x.

Let BR(S) := (5*,+,0,-,1) denote the Boolean ring corresponding to the
Boolean algebra BA(S). We call BR(S) the Boolean ring induced by S.

Then

a+b=(aNb)U(a"Ab) = (alb) A (a"LD"),
ab=aANb=(aUb)A(alb")A(a"UD),

if a,b € S*. We now extend these operations from S* to S in several
"natural” ways by defining

a+b:=a"™*+b",
a+1b:=(aANb)U(a" AD),
a+2b:=(alb)A (a" DY),
ab = a™*b*",

a-1b:=aANb,
a-2b:=(alUb)A(alUb*)A (a*UD).
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Since S* is a subalgebra of S and SU .S C S*, we have
S+S5, 5+185, S+25, 55, 595 CS*.

Lemma 2. + =+7 = +9 and - = 9
Proof. For i € {1,2} it holds

a+2b:(a+zb)**:a**‘i_zb**:a**‘i_b**:a‘i_b,
a-2b=(a-2b)™ =a"™ 9 b" =a™b"™ = ab. -
Obviously, +, - and -1 are commutative and associative and - is distributive
with respect to +.
To S, we assign the following ring-like structures: R(S) := (5, +,0,-,1)
and P(S) :=(S,+,0,1,1).
From the homomorphism theorem, it follows that

0y € ConR(S) N ConP(S) and R(S)/0y = P(S)/0p = BR(S).

Lemma 3. The following identities hold:

a+0=a"", a0 =0, a-10=0,
a+a=0, aa = a**, a-1a=a,
a+a* =1, aa* =0, a-a* =0,
a—+a™* =0, aa™ = a**, a-1a* =a,
a+1=a" al = a**, a-11=a.
Proof. Straightforward. [

Lemma 4. (a+b)*=a*+b=a+b".
Proof. Indeed, we have
(a+b)*=(a+b)+1=(a+1)+b=a"+b,
(a+b)*=(a+b)+1=a+(b+1)=a+b" -
Corollary. a + b= (a+b)* = (a* +b)* = a* + b*. |

The following lemma characterizes vanishing of the symmetric difference
a+b:
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Lemma 5. The following properties are equivalent:
(i) a+0b=0;

) abpb;

(i) There exists a ¢ € S with a +c=0b+ ¢

) at+xz=b+ux forallzeS.

Proof. (i) = (ii): a®™* =a+0=a+(a+b)=(a+a)+b=0+b=>b"".
(i) = (v): a+zx=a"+z=0"+zx=b+axforallz e S.

(iv) = (iii): Straightforward.

(i) = i) a+b=(a+b)+0=(a+b)+(c+c)=(a+c)+ (b+¢c) =
(a4+¢)+(a+c)=0. n

Lemma 6. The following properties are equivalent:
(i) a+b=1;
(ii) a 90 b*;
(iii) a* 6y b.

Proof. Indeed, we have

a+b=1<(a+b)*"=1"<a+b"=0&abyb",
a+b=1&(a+bd)*"=1"<ad"+b=0&a" 0y,

according to Lemma 5. [

Now we want to characterize Boolean pseudocomplemented semilattices.
For this purpose we first need two lemmas. The first of these describes the
set of all solutions of a linear equation:

Lemma 7. We have:

0 if b S*

eSlat+z=0>b}=
teeSlate="b {[a+b]90 it be s

Proof. The first part follows from S+.5 C S*. In order to prove the second
part, assume b € S* and let x € S. Then

at+tr=besd*+tr*=be =" +be ™ =
=(a+b)" < zxbya+bsxcla+ bl m
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Proposition 8. The following properties hold:

(i) ab=a-1b& a™*AD* <aAb;

(i) (a+b)1c=(a1¢)+(b1c)e (a+b)ANc™ <

(i) HreSlat+z=0b} <1< (bgS* or|la+ bl =1);

(iv)

(v)
Proof. (i) is evident.
Ad (ii): (a+0b)-1¢c=(a+b)Acand

(@1¢)+(b1¢) = (ane)+(bAc)=((anc)+(bNe)™ =
= (@A) + (BN =
(@ +0™) AN ™ = (a+b) A

HzxeS|la+z =0} =1« (be S and |[a + b]bp| = 1);
Hzx e Sla+z=>b}>1<be S*

(a+b)ANc=(a+b)Nc™ <
(a+b)ANc™" <(a+b)Nce

((a+b)ANc™ <a+b
and (a+b)ANc™* <cs(a+b)Ac™ <ec.

The properties (iii) — (v) follow from Lemma 7. |

Now we are ready to prove the result concerning the characterization of
Boolean pseudocomplemented semilattices in terms of ring-like operations.

Theorem 9. The following are equivalent:
(i) S is a Boolean algebra;

=015
-1 18 distributive with respect to +;
The equation a + x = b has at most one solution;
The equation a + x = b has exactly one solution;

(vi)  The equation a + x = b has at least one solution.
Proof. Obviously, (i) = (ii) — (vi) and (v) = (iv), (vi).
(ii) = (i): According to (i) of Proposition 8, a** A b** < a A b. Hence
a<a* =a"* AN1" <aAl=a which implies a = a**
(iii) = (i): According to (ii) of Proposition 8, (a + b) A ¢** < ¢. Hence,
c<c™ = (0+41)Ac™ < cand, therefore, ¢ = ¢**
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(iv) = (i): According to (iii) of Proposition 8, |[a+b]0y| = 1 if b € S*. Since
¢, ™ € [0+ ¢**]6p, we have ¢ = ¢**.
(vi) = (i) follows from (v) of Proposition 8. n

4. IDEALS IN GENERALIZATIONS OF PSEUDOCOMPLEMENTED
SEMILATTICES

In the following let A be an algebra such that there exists a binary operation
- on A, a unary operation * on A as well as an element 0 of A such that
0z = zx* = 0 and z0* = x for all z € A.

Every pseudocomplemented meet-semilattice S = (S, A,*,0) can be con-
sidered as such an algebra. (Take A := S and - := A.)

We now define the notions of an ideal of A and of a congruence kernel
of A, respectively. But first let us recall the notion of a unary polynomial
function on A: A function p from A to A is called a unary polynomial
function on A if there exists a positive integer n, an n-ary term function ¢
on A and ag,...,a, € A with p(z) = t(x,as,...,ay) for all z € A.

Definition 10. Let B be a non-empty subset of the algebra A. B is called
an ideal of A — in signs B <1 A — if for all a,b,c € B and for every unary

polynomial function p on A, p(a)(p(b)c*)* € B. B is called a congruence
kernel of A if B = [0]6 for some 6 € ConA.

The following theorem holds for arbitrary universal algebras:

Theorem 11. A non-empty subset B of A is a class of some congruence
on A iff for every unary polynomial function p on A, a,b,p(a) € B implies
p(b) € B.

Proof. See [6]. |

Now, we are able to prove our final result concerning the fact that both
notions defined in Definition 10 coincide:

Theorem 12. The ideals of A coincide with the congruence kernels of A.

Proof.Let I C A. First assume I<{ A. Let a,b € I, let p be a unary polyno-
mial function on A and assume p(a) € I. Then p(b) =p(b)(p(a)(p(a))*)* 1.
Hence, by Theorem 11, there exists some ¢ € A and some 6 € Con(.A) such
that I = [c]@. Let ¢ denote the unary zero polynomial function on A. Then
0 = q(c)(g(c)c*)* € I. Hence I = [0]0 which shows that I is a congruence
kernel of A.
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Conversely, assume I to be a congruence kernel of A. Then there exists
some a € Con(A) with I = [0Ja. Let d,e, f € I and let r be a unary
polynomial function on A. Then r(d)(r(e) f*)* a r(0)(r(0)0*)* = 0 which
shows 7(d)(r(e) f*)* € [0Ja = I. Hence I < A. ]

Remark. The ring-like structures P(S) (where S is a pseudocomplemented
meet-semilattice), Boolean quasirings (introduced in [3]) and orthopseudor-
ings (introduced in [1]) are also special cases of the algebras considered in
this section.
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