DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

N. Rafi

Noorbhasha Rafi

Bapatla Engineering College

email: rafimaths@gmail.com

0000-0003-2070-0533

P. Vijaya Saradhi

Pavuluri Vijaya Saradhi

Bapatla Engineering College

email: vspavuluri1@gmail.com

0000-0001-8590-0101

M. Balaiah

Mothukuri Balaiah

Bapatla Engineering College

email: balaiah_m19@hotmail.com

0000-0003-4703-5043

Title:

The space of minimal prime $D$−filters of Almost Distributive Lattices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 343-368

Received: 2023-01-09 , Revised: 2023-05-27 , Accepted: 2023-05-29 , Available online: 2024-10-28 , https://doi.org/10.7151/dmgaa.1467

Abstract:

The concept of $D$-filters is introduced in an Almost Distributive Lattice (ADL) and studied their properties. An equivalency is established between the minimal prime $D$-filters of an ADL and its quotient ADL with respect to a congruence. Finally, some properties of prime $D$-filters and minimal prime $D$-filters of an ADL are studied topologically.

Keywords:

$D$-normal ADL, compact, Hausdorff space

References:

  1. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV (Providence, 1967), USA.
  2. W.H. Cornish, Normal lattices, J. Aust. Math. Soc. 16 (1972) 200–215.
    https://doi.org/10.1017/S1446788700010041
  3. G. Gratzer, General Lattice Theory (Academic Press, New York, Sanfransisco, 1978).
    https://doi.org/10.1007/978-3-0348-7633-9
  4. A.P. Phaneendra Kumar, M. Sambasiva Rao and K. Sobhan Babu, Generalized prime $D$-filters of distributive lattices, Archivum Mathematicum 57(3) (2021) 157–174.
    https://doi.org/10.5817/am2021-3-157
  5. G.C. Rao, Almost Distributive Lattices, Doctoral Thesis (Dept. of Mathematics, Andhra University, Visakhapatnam, 1980).
  6. G.C. Rao and S. Ravi Kumar, Minimal prime ideals in an ADL, Int. J. Contemp. Sciences 4 (2009) 475–484.
  7. G.C. Rao and S. Ravi Kumar, Normal Almost Distributive Lattices, South. Asian Bull. Math. 32 (2008) 831–841.
  8. G.C. Rao and M. Sambasiva Rao, Annulets in Almost Distributive Lattices, Eur. J. Pure Appl. Math. 2(1) (2009) 58–72.
  9. U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Ser. A), 31 (1981) 77–91.
    https://doi.org/10.1017/S1446788700018498

Close