DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

Y.L. Tenkeu Jeufack

Yannick Léa Tenkeu Jeufack

Department of Mathematics
Ecole Normale Supérieure
University of Yaoundé-1
P.O. Box 47 Yaoundé Cameroon

email: ytenkeu2018@gmail.com

G. Tenkeu Kembang

Gael Tenkeu Kembang

University of Yaoundé I, Faculty of Sciences
Department of Mathematics
P.O. Box 47 Yaoundé, Cameroon

email: tenkeugael@gmail.com

E.R. Temgoua Alomo

Etienne Romuald Temgoua Alomo

University of Yaoundé I, Ecole Normale Supérieure
Department of Mathematics
P.O. Box 47 Yaoundé, Cameroon

email: retemgoua@gmail.com

L. Kwuida

Léonard Kwuida

Bern University of Applied Sciences (BFH), Business Scool
Institut Applied Data Sciences and Finance
Bruckenstrasse 73, CH-3005 Bern, Switzerland

email: leonard.kwuida@bfh.ch

Title:

Filters, ideals and power of double Boolean algebras

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 451-478

Accepted: 2024-10-16 , Available online: 2024-10-17 , https://doi.org/10.7151/dmgaa.1466

Abstract:

Double Boolean algebras (dBas) are algebras $\underline{D}=(D;\sqcap,\sqcup, \neg,\lrcorner,\bot,\top)$ of type $(2,2,1,1,0,0)$, introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts. Boolean algebras form a subclass of dBas. Our goal is an algebraic investigation of dBas, based on similar results on Boolean algebras. In this paper, we describe filters, ideals, homomorphisms and powers of dBas. We show that principal filters as well as principal ideals of dBas form (non necessary isomorphic) Boolean algebras. We also show that, a primary ideal (resp. primary filter) is exactly maximal ideal (resp. ultrafilter) in dBas and primary ideal (resp. filter) needs not be a prime ideal (resp. filter). For a finite dBa, a primary filters (resp. ideals) are principal filter (resp. ideals) generated by atom (resp. co-atom). Some properties of homomorphisms of dBas are investigated and the relationship between the homomorphism of dBas $\underline{D}$, $\underline{M}$ and the lattices of filters (resp. ideals) of these two dBas. Giving a dBa $\underline{D}$ and a non-emptyset $X,$ we study some relationship between $\underline{D}$ and $\underline{L}=\underline{D}^{X}$ by showing that $\underline{D}$ is contextual, fully contextual (resp. trivial) if and only if $\underline{L}$ is contextual, fully contextual (resp. trivial). In addition, we show that $\underline{D}$ embeds into $\underline{L}$ and the lattice of filters $\mathcal{F}(\underline{D})$ (resp. of ideals $\mathcal{I}(\underline{D})$) is algebraic and embeds in the lattice $\mathcal{F}(\underline{L})$ (resp. $\mathcal{I}(\underline{L})$). We finish this paper by showing that some sets of polynomial functions of $\underline{D}$ form a Boolean algebra isomorphic to the set of principal filters (resp. principal ideals) of $\underline{D}$.

Keywords:

double Boolean algebra, protoconcepts algebra, concept algebra, formal concept

References:

  1. B.E. Breckner and C. Sǎcǎrea, A Topological representation of double Boolean lattices, Stud Univ. Babes-Bolyai Math. 64(1) (2019) 11–23.
  2. S. Burris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, 1981).
  3. B. Ganter and R. Wille, Formal Concept Analysis, Mathematical Foundations (Springer, Heildelberg, 1999).
    https://doi.org/10.1007/978-3-642-59830-2
  4. P. Howlader and M. Banerjee, Remarks on Prime Ideal and Representation Theorem for Double Boolean Algebras, in: CLA 2020 The 15th International Conference on Concept lattices and their Applications, F.J. Valverde-Albacete and M. Trnecka (Ed(s)), CEUR WS 2668 (2020) 83–94.
  5. P. Howlader and M. Banerjee, Topological Representation of Double Boolean Algebras}, Algebra Univeralis 84 (15) (2023).
    https://doi.org/10.1007/s00012-023-00811-x
  6. L. Kwuida, Dicomplemented Lattices. A contextual Generalization of Boolean Algebras (Shaker Verlag, 2004).
  7. L. Kwuida, Prime ideal theorem for double Boolean algebras, Discuss. Math. General Algebra and Appl. 27(2) (2007) 263–275.
    https://doi.org/10.7151/dmgaa.1130
  8. Y.L.J. Tenkeu, E.R.A. Temgoua and L. Kwuida, Filters, Ideals and Congruences on Double Boolean Algebras, in: Formal Concept Analysis, ICFCA 2021, A. Braud, A. Buzmakov, T. Hanika and F. Le Ber (Ed(s)), (Springer LNAI 12733 2021) 270–280.
    https://doi.org/10.1007/978-3-030-77867-$5_$18
  9. B. Vormbrock and R. Wille, Semiconcept and protoconcept algebras: The basic theorem, in: Formal Concept Analysis: Foundations and Applications, B. Ganter, G. Stumme and R. Wille (Ed(s)), (Springer Berlin Heidelberg 2005) 34–48.
  10. R. Wille, Boolean concept Logic, in: Conceptual Structures: Logical Linguistic, and Computational Issues, B. Ganter and G.W. Mineau (Ed(s)), (Springer, Berlin Heildelberg 2000) 317–331.

Close