DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

M. Sambasiva Rao

Mukkamala Sambasiva Rao

Department of Mathematics
MVGR College of Engineering, Vizianagaram
Andhra Pradesh, India-535005

email: mssraomaths35@rediffmail.com

0000-0002-1627-9603

S.V. Siva Rama Raju

Sagiraju Venkata Siva Rama Raju

Academic Support Department
Abu Dhabi Polytechnic
Abu Dhabi, UAE

email: shivram2006@yahoo.co.in

0000-0002-5487-2395

Title:

Coherent lattices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 287-299

Received: 2023-02-15 , Revised: 2023-04-16 , Accepted: 2023-04-18 , Available online: 2024-09-10 , https://doi.org/10.7151/dmgaa.1463

Abstract:

The notion of coherent lattices is introduced and established relations between a coherent lattice and that of a generalized Stone lattice, Boolean algebra, quasi-complemented lattice, and normal lattice. A set of equivalent conditions is given for every sublattice of a lattice to become a coherent lattice. Some equivalent conditions are given for every interval of a lattice to become a coherent sublattice. Coherent lattices are characterized with the help of certain properties of lters and dense elements.

Keywords:

Coherent lattice, generalized Stone lattice, Boolean algebra

References:

  1. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. XXV (Providence, USA, 1976).
  2. S. Burris and H.P. Sankappanavar, A Course in Univerasal Algebra (Springer Verlag, 1981).
  3. I. Chajda, R. Halaš and J. Kühr, Semilattice structures (Heldermann Verlag, Germany, 2007).
  4. W.H. Cornish, Normal lattices, J. Austral. Math. Soc. 14 (1973) 167–179.
    https://doi.org/10.1017/S1446788700010041
  5. W.H. Cornish, Congruences on distributive pseudo-complemented lattices, Bull. Austral. Math. Soc. 8 (1973) 161–179.
    https://doi.org/10.1017/S0004972700042404
  6. W.H. Cornish, Annulets and $\alpha$-ideals in distributive lattices, J. Austral. Math. Soc. 15 (1973) 70–77.
    https://doi.org/10.1017/S1446788700012775
  7. W.H. Cornish, Quasi-complemented lattices, Comm. Math. Univ. Carolinae 15(3) (1974) 501–511.
  8. O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962) 505–514.
    https://doi.org/10.1215/S0012-7094-62-02951-4
  9. G. Gratzer, General lattice theory (Academic Press, New York, San Francisco, USA, 1978).
  10. J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc., Sec. B 13 (1963) 31–50.
    https://doi.org/10.1112/plms/s3-13.1.31
  11. M. Mandelker, Relative annihilators in lattices, Duke Math. J. 37 (1970) 377-386.
    https://doi.org/10.1215/S0012-7094-70-03748-8
  12. A.P. Paneendra Kumar, M. Sambasiva Rao and K. Sobhan Babu, Filters of distributive lattices generated by dense elements, Palestine J. Math. 11(2) (2022) 45–54.
  13. A.P. Paneendra Kumar, M. Sambasiva Rao and K. Sobhan Babu, Generalized prime $D$-filters of distributive lattices, Archivum Mathematicum 57(3) (2021) 157–174.
    https://doi.org/10.5817/AM2021-3-157
  14. M. Sambasiva Rao, A note on $\sigma $-ideals of distributive lattices, Alg. Struct. and their Appl. 9(2) (2022) 163–179.
    https://doi.org/10.22034/AS.2022.2720
  15. T.P. Speed, Some remarks on a class of distributive lattices, Jour. Aust. Math. Soc. 9 (1969) 289–296.
    https://doi.org/10.1017/S1446788700007205
  16. M.H. Stone, A theory of representations for Boolean algebras, Tran. Amer. Math. Soc. 40 (1936) 37–111.
    https://doi.org/10.2307/1989664

Close