Article in press
Authors:
Title:
Congruences on a semi-Brouwerian almost distributive lattice
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2024-04-29 , Revised: 2024-06-27 , Accepted: 2024-06-28 , Available online: 2024-08-28 , https://doi.org/10.7151/dmgaa.1462
Abstract:
In this paper, we prove that the class of smart congruences on semi-Brouwerian almost distributive lattices is a permutable sublattice of the lattice of congruences. We also extract two different permutable sublattices of a semi-Brouwerian almost distributive lattice from the class of filters in a semi-Brouwerian almost distributive lattice.
Keywords:
Semi-Brouwerian almost distributive lattice, congruence, smart congruence, filter
References:
- G. Birkhoff, Lattice theory (Third edition. Amer. Math. Soc. Colloq. Publ., 25, 1979), https://doi.org/10.1090/coll/025.
- G. Boole, An Investigation of the Laws of Thought (Cambridge University Press, 1854), https://doi.org/10.1017/CBO9780511693090.
- S. Burris and H.P. Sankappanavar, A first course in universal algebra (Spinger-Verlag, New York, Heidelberg, Berlin, 1981), https://doi.org/10.2307/2322184.
- G. Grätzer, General Lattice Theory (Birkhäuser Basel, Springer Basel AG, 1978), https://doi.org/10.1007/978-3-0348-7633-9.
- G.C. Rao, B. Assaye and M.V. Ratnamani, Heyting almost distributive lattices, Int. J. Comp. Cognition 8 (3) 2010, 89–93.
- G.C. Rao, M.V. Ratnamani and K.P. Shum, Almost semi-Heyting algebras, Southeast Asian Bull. Math. 42 (2018) 95–110.
- G.C. Rao and M.V. Ratnamani, Smart congruences and weakly directly indecomposable SHADLs, Bull. Int. Math. Virtual Inst. 5 (2015) 37–45.
- H.P. Sankappanavar, Semi-Heyting algebra: An abstraction from Heyting algebras (IX Congreso Monteiro, 2007), 33–66.
- V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani and K.P. Shum, Semi-Brouwerian almost distributive lattices, Southeast Asian Bull. Math. 45 (2022) 849–860.
- V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani, B. Ravikumar and A. Iampan, Associative types in a semi-Brouwerian almost distributive lattice with respect to the binary operation $\varrho$, Int. J. Anal. Appl. 22 (2024) Article No. 13, https://doi.org/10.28924/2291-8639-22-2024-13.
- M.H. Stone, A theory of representations of Boolean algebras, Trans. Am. Math. Soc. 40 (1936) 37–111, https://doi.org/10.2307/1989664.
- M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Časopis pro Pěstován\'{\i} Matematiky a Fysiky 67 (1937) 1–25, http://eudml.org/doc/27235.
- U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Austral. Math. Soc. (Series A) 31 (1981) 77–91, https://doi.org/10.1017/s1446788700018498.
Close