DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

Dr. Sirisetti

Ramesh Sirisetti

Department of Mathematics
GITAM School of Science
GITAM (Deemed to be University)
Visakhapatnam.

email: ramesh.sirisetti@gmail.com

0000-0002-5658-2295

MR. Sriknth V.V.V.S.S.P.S.

Sriknth V.V.V.S.S.P.S.

Department of Basic science and Humanities
Aditya Institute of Technology and Management
Tekkali, India.

email: srikanth.vvvs@gmail.com

0000-0002-1676-9602

Dr M.V.

Ratnamani M.V.

Department of Basic science and Humanities,
Aditya Institute of Technology and Management
Tekkali, Srikakulum.

email: vvratnamani@gmail.com

0000-0002-5170-4804

R. Ravi Kumar Bandaru

Ravi Ravi Kumar Bandaru

GITAM University

email: ravimaths83@gmail.com

A. Iampan

Aiyared Iampan

Department of Mathematics
School of Science
University of Phayao

email: aiyared.ia@up.ac.th

0000-0002-0475-3320

Title:

Congruences on a semi-Brouwerian almost distributive lattice

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-04-29 , Revised: 2024-06-27 , Accepted: 2024-06-28 , Available online: 2024-08-28 , https://doi.org/10.7151/dmgaa.1462

Abstract:

In this paper, we prove that the class of smart congruences on semi-Brouwerian almost distributive lattices is a permutable sublattice of the lattice of congruences. We also extract two different permutable sublattices of a semi-Brouwerian almost distributive lattice from the class of filters in a semi-Brouwerian almost distributive lattice.

Keywords:

Semi-Brouwerian almost distributive lattice, congruence, smart congruence, filter

References:

  1. G. Birkhoff, Lattice theory (Third edition. Amer. Math. Soc. Colloq. Publ., 25, 1979), https://doi.org/10.1090/coll/025.
  2. G. Boole, An Investigation of the Laws of Thought (Cambridge University Press, 1854), https://doi.org/10.1017/CBO9780511693090.
  3. S. Burris and H.P. Sankappanavar, A first course in universal algebra (Spinger-Verlag, New York, Heidelberg, Berlin, 1981), https://doi.org/10.2307/2322184.
  4. G. Grätzer, General Lattice Theory (Birkhäuser Basel, Springer Basel AG, 1978), https://doi.org/10.1007/978-3-0348-7633-9.
  5. G.C. Rao, B. Assaye and M.V. Ratnamani, Heyting almost distributive lattices, Int. J. Comp. Cognition 8 (3) 2010, 89–93.
  6. G.C. Rao, M.V. Ratnamani and K.P. Shum, Almost semi-Heyting algebras, Southeast Asian Bull. Math. 42 (2018) 95–110.
  7. G.C. Rao and M.V. Ratnamani, Smart congruences and weakly directly indecomposable SHADLs, Bull. Int. Math. Virtual Inst. 5 (2015) 37–45.
  8. H.P. Sankappanavar, Semi-Heyting algebra: An abstraction from Heyting algebras (IX Congreso Monteiro, 2007), 33–66.
  9. V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani and K.P. Shum, Semi-Brouwerian almost distributive lattices, Southeast Asian Bull. Math. 45 (2022) 849–860.
  10. V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani, B. Ravikumar and A. Iampan, Associative types in a semi-Brouwerian almost distributive lattice with respect to the binary operation $\varrho$, Int. J. Anal. Appl. 22 (2024) Article No. 13, https://doi.org/10.28924/2291-8639-22-2024-13.
  11. M.H. Stone, A theory of representations of Boolean algebras, Trans. Am. Math. Soc. 40 (1936) 37–111, https://doi.org/10.2307/1989664.
  12. M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Časopis pro Pěstován\'{\i} Matematiky a Fysiky 67 (1937) 1–25, http://eudml.org/doc/27235.
  13. U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Austral. Math. Soc. (Series A) 31 (1981) 77–91, https://doi.org/10.1017/s1446788700018498.

Close