DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

Mohsen Aliabadi Aliabadi

Mohsen Aliabadi

University of California, San Diego

email: mohsenmath88@gmail.com

Title:

Conditions for matchability in groups and field extensions II

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2023-11-13 , Revised: 2024-04-06 , Accepted: 2024-04-07 , Available online: 2024-08-23 , https://doi.org/10.7151/dmgaa.1461

Abstract:

We present sufficient conditions for the existence of matchings in abelian groups and their linear counterparts. These conditions lead to extensions of existing results in matching theory. Additionally, we classify subsets within abelian groups that cannot be matched. We introduce the concept of Chowla subspaces and formulate and conjecture a linear analogue of a result originally attributed to Y. O. Hamidoune [20] concerning Chowla sets. If proven true, this result would extend matchings in primitive subspaces. Throughout the paper, we emphasize the analogy between matchings in abelian groups and field extensions. We also pose numerous open questions for future research. Our approach relies on classical theorems in group theory, additive number theory and linear algebra. As the title of the paper suggests, this work is the second sequel to a previous paper [5] with a similar theme. This paper is self-contained and can be read independently

Keywords:

matching property

References:

  1. M. Aliabadi and K. Filom, Results and questions on matchings in abelian groups and vector subspaces of fields, Journal of Algebra 598 (2022) 85–104.
  2. M. Aliabadi, M. Hadian and A. Jafari, On matching property for groups and field extensions, Journal of Algebra and Its Applications 15(1) (2016) 1650011.
  3. M. Aliabadi and M. V. Janardhanan, On local matching property in groups and vector space, Australas. J. Combin. 70 (2018) 75–85.
  4. M. Aliabadi and M. V. Janardhanan, On matchable subsets in abelian groups and their linear analogues, Linear Algebra and its Applications 582 (2019) 138–155.
  5. M. Aliabadi, J. Kinseth, C. Kunz, H. Serdarevic and C. Willis, Conditions for matchability in groups and field extensions, Linear and Multilinear Algebra 71(7) (2023) 1182–1197.
  6. M.Aliabadi and S. Zerbib, Matchings in matroids over abelian groups (arXiv preprint arXiv:2202.07719).
    arXiv: 2022
  7. N. Alon, C. K. Fan, D. Kleitman and J. Losonczy, Acyclic matchings, Advances in Mathematics 122(23) (1996) 234–236.
  8. C. Bachoc, O. Serra and G. Zémor, An analogue of Vosper's theorem for extension fields, Mathematical Proceedings of the Cambridge Philosophical Society 163 (2017) 423–452.
  9. C. Bachoc, O. Serra and G. Zémor, Revisiting Kaeser's theorem for field extensions, Combinatorica 38(4) (2018) 759–777.
  10. É. Balandraud, Une variante de la méthode isopérimétrique de Hamidoune, appliquée au théoreme de Kneser, Annales de l'institut Fourier 58(3) (2008) 915–943.
  11. A. Cauchy, Recherches sur les nombres, J. Ecole Polytechnique 9 (1813) 99–116.
  12. I. Chowla, A theorem on the addition of residue classes: Application to the number $\gamma(k)$ in Waring’s problem, Proceedings of the Indian Academy of Sciences-Section A 2(3) (1935) 242–243.
  13. T. Cochrane, M. Ostergaard and C. Spencer, Cauchy-davenport theorem for abelian groups and diagonal congruences, Proceedings of the American Mathematical Society 147(8) (2019) 3339–3345.
  14. I. Czerwinski and A. Pott, Sidon sets, sum-free sets and linear codes (https://arxiv.org/abs/2304.07906).
    arXiv: 2023
  15. H. Davenport, On the addition of residue classes, Journal of the London Mathematical Society 1(1) (1935) 30–32.
  16. S. Eliahou and C. Lecouvey, Matchings in arbitrary groups, Advances in Applied Mathematics 40(2) (2008) 219–224.
  17. S. Eliahou and C. Lecouvey, Matching subspaces in a field extensio, Journal of Algebra 324(12) (2010) 3420–3430.
  18. C. K. Fan and J. Losonczy, Matchings and canonical forms for symmetric tensors, Advances in Mathematics 117(2) (1996) 228–238.
  19. D. J. Grynkiewicz, Structural additive theory (30, Springer), 2013.
  20. Y. O. Hamidoune, A generalization of an addition theorem of Shatrowsky, European Journal of Combinatorics 13(4) (1992) 249–255.
  21. Y. O. Hamidoune, Counting certain pairings in arbitrary groups, Combinatorics, Probability and Computing 20(6) (2011) 855–865.
  22. X. D. Hou, On a vector space analogue of Kneser's theorem, Linear Algebra and its Applications 426(1) (2007) 214–227.
  23. X. D. Hou, K. Leung and Q. Xiang, A generalization of an addition theorem of Kneser, Journal of Number Theory 97(1) (2002) 1–9.
  24. J.H.B. Kemperman, On small sumsets in an abelian group, Acta Mathematica 103 (1960) 63–88.
  25. J.H.B. Kemperman, On complexes in a semigroup, in: Indagationes Mathematicae, 59 (Ed(s)), (Elsevier 1956) 247–254.
  26. J. Losonczy, On matchings in groups, Advances in Applied Mathematics 20(3) (1998) 385–391.
  27. M. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets (Springer-Verlag New York, 1996).
  28. J. Olson, On the sum of two sets in a group, Journal of Number Theory 18(1) (1984) 110–120.
  29. R. Rado, A theorem on independence relations, The Quarterly Journal of Mathematics 1(1) (1942) 83–89.
  30. E. K. Wakeford, On canonical forms, Proceedings of the London Mathematical Society 2(1) (1920) 403–410.

Close