DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

N. Snanou

Noureddine Snanou

Department of Mathematics
Sciences Faculty, Mohammed First University
Oujda, Morocco.

email: n.snanou@ump.ac.ma

0000-0002-9437-8332

Title:

On the isomorphism problem for knit products

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 45(1) (2025) 177-189

Received: 2023-12-21 , Revised: 2024-05-19 , Accepted: 2024-05-20 , Available online: 2024-08-22 , https://doi.org/10.7151/dmgaa.1460

Abstract:

In this paper, we classify up to isomorphism the groups that can be represented as knit products of two groups. More precisely, some necessary and sufficient conditions for two knit products to be isomorphic are given. We mainly deal with isomorphisms leaving one of the two factors or even both invariant. In particular, we decide under some conditions how the knit products arise as split extensions. Furthermore, the decomposition of unfaithful knit products is investigated.

Keywords:

knit product, factorization problem, lower isomorphic, upper isomorphic, diagonally isomorphic

References:

  1. A.L. Agore, A. Chirv$\breve{a}$situ, B. Ion and G. Militaru, Bicrossed products for finite groups, Algebr. Represent. Theory 12 (2009) 481–488.
    https://doi.org/10.1007/s10468-009-9145-6
  2. F. Ateş and A.S. Çevik, Knit products of some groups and their applications, Rend. Sem. Mat. Univ. Padova 121 (2009) 1–11.
    https://doi.org/10.4171/RSMUP/121-1
  3. M.G. Brin, On the Zappa-Szép product, Communications in Algebra 33(2) (2005) 393–424.
    https://doi.org/10.1081/AGB-200047404
  4. J. Douglas, On finite groups with two independent generators. I, II, III, IV, Proc. Nat. Acad. Sci. U.S.A. 37 (1951) 604–610, 677–691, 749–760, 808–813, 10.1073/pnas.37.10.677.
    https://doi.org/10.1073/pnas.37.9.604
  5. S. Eilenberg and S. MacLane, Group extensions and homology, Ann. Math., Second Series 43(4) (1942) 757–831.
    https://doi.org/10.2307/1968966
  6. P. Hall, A characteristic property of soluble groups, J. London Math. Soc. 12 (1937) 198–200.
    https://doi.org/10.1112/jlms/s1-12.2.198
  7. B. Huppert, Über das Produkt von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58 (1953) 243–264.
    https://doi.org/10.1007/BF01174144
  8. S. MacLane, Homology (Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
  9. L. Rédei, Zur Theorie der faktorisierbaren Gruppen I, Acta Math. Acad. Sci. Hungar. 1 (1950) 74–98.
    https://doi.org/10.1007/BF02022554
  10. O. Schreier, Über die Erweiterung von Gruppen I, Monatsh. Math. Phys. 34 (1926) 165–180.
    https://doi.org/10.1007/BF01694897
  11. N. Snanou and M.E. Charkani, On the isomorphism problem for split extensions, J. Algebra Appl. 23(2) (2024) 2430002.
    https://doi.org/10.1142/S0219498824300022
  12. N. Snanou, On non-split abelian extensions II, Asian-Eur. J. Math. 14(9) (2021) 2150164.
    https://doi.org/10.1142/S1793557121501643
  13. N. Snanou, On the isomorphism problem for central extensions I, Proc. Jangjeon Math. Soc. 27(2) (2024) 101–109.
    https://doi.org/10.17777/pjms2024.27.2.101
  14. N. Snanou, On the Isomorphism Problem for Central Extensions II, Eur. J. Pure Appl. Math. 17(2) (2024) 956–968.
    https://doi.org/10.29020/nybg.ejpam.v17i2.5118
  15. J. Szép, Über die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen, Comment. Math. Helv. 22 (1949) 31–33.
    https://doi.org/10.1007/BF02568046
  16. J. Szép and L. Rédei, On factorisable groups, Acta Univ. Szeged. Sect. Sci. Math. 13 (1950) 235–238.
  17. J. Szép, Zur Theorie der endlichen einfachen Gruppen, Acta Sci. Math. Szeged 14 (1951) 111–112.
  18. K.R. Yacoub, On general products of two finite cyclic groups one of which being of order $p^{2}$, Publ. Math. Debrecen 6 (1959) 26–39.
  19. G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, in: Atti Secondo Congresso Un. Mat. Ital. Bologna, 1940, (Edizioni Cremonense, Rome 1942) 119–125.

Close