DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

- Srisawat

Jitsapa Srisawat

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University

email: jitsupa.sris@dome.tu.ac.th

0009-0003-4413-9231

- Chaiya

Yanisa Chaiya

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University

email: yanisa@mathstat.sci.tu.ac.th

0000-0002-7119-2658

Title:

Semigroups of partial transformations with invariant set: Green's relations, unit regularity and directly finiteness

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-03-27 , Revised: 2024-07-11 , Accepted: 2024-07-11 , Available online: 2024-08-20 , https://doi.org/10.7151/dmgaa.1459

Abstract:

Given a nonempty set $X$, and let $P(X)$ denote the partial transformation semigroup on $X$. For a nonempty subset $Y$ of $X$, define $\overline{PT}(X,Y)$ as follows: $$\overline{PT}(X,Y)=\{\alpha\in P(X) : (\dom(\alpha)\cap Y)\alpha\subseteq Y\}.$$ Then $\pt$ is a generalization of $P(X)$, consisting of all partial transformations on $X$ that leave $Y$ as an invariant set. In this paper, we investigate the Green's relations and explore all unit regular elements. Additionally, we determine the necessary and sufficient conditions for $\pt$ to be unit regular and directly finite.

Keywords:

partial transformation semigroups, Green's relations, unit regular semigroups, directly finite semigroups

References:

  1. Alarcao H. Factorisation as a finiteness condition. Semigroup Forum 1980; 20: 281-282.
  2. Boonmee A. Factorization on some Semigroup. Msc, Chiang Mai University, Chiang Mai, Thailand, 2007.
  3. Chaiya Y. Natural partial order and finiteness conditions on semigroups of linear transformations with invariant subspaces. Semigroup Forum 2019; 99: 579-590.
  4. Chaiya Y, Honyam P, Sanwong J. Natural partial orders on transformation semigroups with fixed sets. International Journal of Mathematics and Mathematical Sciences 2016; 1-7. doi:10.1155/2016/2759090. https://doi.org/10.1155/2016/2759090
  5. Chaiya Y, Honyam P, Sanwong J. Maximal subsemigroups and finiteness conditions on transformation semigroups with fixed sets. Turkish Journal of Mathematics 2017; 41: 43-54.
  6. Chaiya Y, Pookpienlert C, Sanwong J. Semigroups of linear transformations with fixed subspaces: Green’s relations, ideals and finiteness conditions Asian-European Journal of Mathematics 2019; 12 (1): 1-12. https://doi.org/10.1142/S1793557119500621.
  7. Chinram R, Baupradist S, Yaqoob N, Petchkaew P. Left and right magnifying elements in some generalized partial transformation semigroups. Communications in Algebra 2021; 49 (7): 3176–3191. https://doi.org/10.1080/00927872.2021.1890104
  8. Chinram R, Yonthanthum W. Regularity of the semigroups of transformations with a fixed point Set, Thai Journal of Mathematics 2020; 18 (3): 1261-1268.
  9. Doss CG. Certain equivalence relations in transformation semigroup. MA, University of Tennessee, Knoxville, Tennessee, United States, 1955.
  10. Honyam P, Sangwong J. Semigroups of tranformations with invariant set. Journal of the Korean Mathematical Society 2011; 48 (2): 289-300.
  11. Honyam P, Sanwong J. Semigroup of transformations with fixed sets, Quaestiones Mathematicae 2013; 36 (1): 79-92.
  12. Howie JM. Fundamentals of Semigroup Theory, London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
  13. Magill KD Jr. Subsemigroups of $S(X)$, Mathematica Japonica 1966; 11: 109–115.
  14. Nenthein S, Youngkhong P, Kemprasit Y. Regular elements of some transformation semigroups. Pure Mathematics and Applications 2005; 16 (3): 307-314.
  15. Nupo N, Pookpienlert C. Domination parameters on Cayley digraphs of transformation semigroups with fixed sets. Turkish Journal of Mathematics 2021; 45 (4): 1775-1788.
  16. Nupo N, Pookpienlert C. On connectedness and completeness of Cayley digraphs of transformation semigroups with fixed sets. International Electronic Journal of Algebra 2020; 28: 110-126.
  17. Pantarak T, Chaiya Y. Regularity and abundance on semigroups of partial transformations with invariant set. Open Mathematics 2023; 21 (1): 1-12.
  18. Sun L, Wang L. Natural partial order in semigroups of transformations with invariant set. Bulletin of the Australian Mathematical Society 2013; 87: 94-107.
  19. Sun L, Sun J. A note on naturally ordered semigroups of transformations with invariant set. Bulletin of the Australian Mathematical Society 2015; 91: 264-267.
  20. Tirasupa Y. Factorizable transformation semigroup. Semigroup Forum 1979; 18: 15-19.
  21. Wijarajak R, Chaiya Y. Green’s relations and regularity on semigroups of partial transformations with fixed sets. Communications in Algebra 2022; 18: 15-19.
  22. Wijarajak R, Chaiya Y. A note on the abundance of partial transformation semigroups with fixed point sets. Discussiones Mathematicae - General Algebra and Applications 2023; 43 (2):241-247.

Close