Article in press
Authors:
Title:
Some Algebraic Characterisations of Generalised Middle Bol Loops
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2023-07-11 , Revised: 2024-03-27 , Accepted: 2024-03-27 , Available online: 2024-08-19 , https://doi.org/10.7151/dmgaa.1457
Abstract:
In this article, some algebraic characterisations of generalised middle Bol loop (GMBL) using its parastrophes and holomorph were studied. In particular, it was shown that if the generalised map $\alpha$ is bijective such $\alpha: e\rightarrow e$, then the $(12)-$ parastrophe of GMBL is a GMBL. The conditions for $(13)-$ and $(123)-$parastrophes of a GMBL to be GMBL of exponent two were unveiled. We further established that a commutative $(13)-$ and $(123)-$parastrophes of GMBL has an inverse properties. $(23)-$ parastrophe of $Q$ was shown to be super $\alpha-$elastic property if it has a middle symmetric while $(132)-$parastrophe of $Q$ satisfies left $ \alpha-$symmetric. It is further shown that a commutative $(13)-$ and $(123)-$ parastrophes of $Q$ are generalised Moufang loops of exponent two. Also, commutative $(132)-$ and $(23)-$ parastophes of $Q$ are shown to be Steiner loops. A necessary and sufficient condition for holomorph of generalised middle Bol loop to be GMBL was presented. The holomorph of a commutative loop was shown to be a commutative generalised middle Bol loop if and only if the loop is a GMBL.
Keywords:
parastrophe , GMBL, holomorph
References:
- {J. O. Adeniran, T. G. Jaiyé\d olá and K. A. Idowu} Holomorph of generalized Bol loops, Novi Sad Journal of Mathematics, 44, (1), 37–51, 2014.
- {A. O. Abdulkareem, J. O. Adeniran, A. A. A. Agboola and G. A. Adebayo}Universal $\alpha-$elasticity of generalised Moufang loops. Annals of Mathematics and Computer Science. 14, 1–11, 2023.
- {A. O. Abdulkareem, J. O. Adeniran} Generalised middle Bol loops. Journal of the Nigerian Mathematical Society 39 (3), 303-313, 2020.
- {V. D. Belousov} Foundations of the theory of quasigroups and loops, (Russian) Izdat. ``Nauka'', Moscow 223pp,1967.
- {R. O. Fisher and F. Yates} The 6x6 latin squares, Proc. Soc 30, 429-507, 1934.
- {A. Gvaramiya}On a class of loops (Russian), Uch. Zapiski MAPL. 375, 25-34,1971.
- {T. G. Jaiyé\d olá, S. P. David and Y. T. Oyebo} {New algebraic properties of middle Bol loops}. ROMAI J. 11 (2), 161–183, 2015.
- {T. G. Jaiyé\d olá, S. P. David, E. Ilojide and Y. T. Oyebo}{ Holomorphic structure of middle Bol loops}. Khayyam J. Math. 3(2), 172–184. 2017 https://doi.org/10.22034/kjm.2017.51111
- {T. G. Jaiyé\d olá, S. P. David and O. O. Oyebola} New algebraic properties of middle Bol loops II. Proyecciones Journal of Mathematics 40(1), 85–106, 2021. http://dx.doi.org/10.22199/issn.0717-6279-2021-01-0006
- {T. G. Jaiyé\d olá} Some necessary and sufficient conditions fro parastrophic invarance in the associative law in quasigroups, Fasciculi Mathematici, 40 25–35, 2008.
- {T. G. Jaiyé\d olá} Basic Properties of Second Smarandache Bol Loops, International Journal of Mathematical Combinatorics, 2, 11–20, 2009. http://doi.org/10.5281/zenodo.32303.
- {T. G. Jaiyé\d olá} Smarandache Isotopy of Second Smarandache Bol Loops, Scientia Magna Journal, 7(1), 82–93, 2011. http://doi.org/10.5281/zenodo.234114.
- {T. G. Jaiyé\d olá and B. A. Popoola} Holomorph of generalized Bol loops II, Discussiones Mathematicae-General Algebra and Applications, 35(1), 59-–78, 2015. doi:10.7151/dmgaa.1234.
- {T. G. Jaiyé\d olá, B. Osoba and A. Oyem} Isostrophy Bryant-Schneider Group-Invariant of Bol Loops, Buletinul Academiei De S¸Tiinte¸ A Republicii Moldova. Matematica, 2(99), 3–18, 2022.
- {E. Kuznetsov} Gyrogroups and left gyrogroups as transversals of a special kind, Algebraic and discrete Mathematics 3, 54–81, 2005.
- {Grecu, I} On multiplication groups of isostrophic quasigroups, Proceedings of the Third Conference of Mathematical Society of Moldova, IMCS-50, 19-23, Chisinau, Republic of Moldova, 78–81, 2014.
- {I. Grecu and P. Syrbu} On Some Isostrophy Invariants of Bol Loops, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 54(5), 145–154,2012.
- {A. Drapal and V. Shcherbacov} Identities and the group of isostrophisms, Comment. Math. Univ. Carolin, 53(3), 347–374, 2012.
- {Syrbu, P. and Grecu, I} On some groups related to middle Bol loops, Studia Universitatis Moldaviae (Seria Stiinte Exacte si Economice), 7(67), 10–18, 2013.
- {P. Syrbu} Loops with universal elasticity, Quasigroups Related Systems,1, 57–65, 1994.
- {P. Syrbu}On loops with universal elasticity, Quasigroups Related Systems,3, 41–54, 1996.
- {P. Syrbu} On middle Bol loops, ROMAI J., 6(2), 229–236, 2010.
- {P. Syrbu and I. Grecu} Loops with invariant flexibility under the isostrophy, Bul. Acad. Stiinte Repub. Mold. Mat. 92(1), 122-128, 2020.
- {I. Grecu and P. Syrbu} Commutants of middle Bol loops, Quasigroups and Related Systems, 22, 81–88, 2014.
- {B. Osoba and Y. T. Oyebo} On Multiplication Groups of Middle Bol Loop Related to Left Bol Loop, Int. J. Math. And Appl., 6(4), 149–155, 2018.
- {Osoba. B and Oyebo. Y. T} On Relationship of Multiplication Groups and Isostrophic quasigroups, International Journal of Mathematics Trends and Technology (IJMTT), 58 (2), 80–84, 2018. DOI:10.14445/22315373/IJMTT-V58P511
- {B. Osoba} Smarandache Nuclei of Second Smarandache Bol Loops, Scientia Magna Journal, 17(1), 11–21, 2022.
- {B. Osoba and T. G. Jaiyé\d olá}Algebraic Connections between Right and Middle Bol loops and their Cores, Quasigroups and Related Systems, 30, 149-160, 2022.
- {T. Y Oyebo, B. Osoba, and T. G. Jaiyé\d olá.}Crypto-automorphism Group of some quasigroups, Discussiones Mathematicae-General Algebra and Applications. Accepted for publication.
- {Y. T. Oyebo and B. Osoba} More results on the algebraic properties of middle Bol loops, Journal of the Nigerian mathematical society, 41(2), 129-42, 2022.
- {Pflugfelder, Hala O} Quasigroups and loops: introduction . Sigma Series in Pure Mathematics, 7. Heldermann Verlag, Berlin. viii+147, 1971.
- {V. A. Shcherbacov}A-nuclei and A-centers of quasigroup, Institute of mathematics and computer Science Academiy of Science of Moldova Academiei str. 5, Chisinau, MD -2028, Moldova ,2011
- A. R. T, Solarin, J. O. Adeniran, T. G. Jaiyé\d olá, A. O. Isere and Y. T. Oyebo. "Some Varieties of Loops (Bol-Moufang and Non-Bol-Moufang Types)". In: Hounkonnou, M.N., Mitrović, M., Abbas, M., Khan, M. (eds) Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-39334-1\_3
Close