DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

K. Draoui

Khalid Draoui

Department of Mathematics, Faculty of Sciences Dhar Al Mahraz, P.O. Box 1796, University Sidi Mohamed Ben Abdellah Fez, Morocco.

email: khalid.draoui@usmba.ac.ma

0000-0001-9879-4096

H. Choulli

Hanan Choulli

Department of Mathematics. Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796. University Sidi Mohamed Ben Abdellah Fez, Morocco

email: hanan.choulli@usmba.ac.ma

0000-0002-7260-882X

H. Mouanis

Hakima Mouanis

Department of Mathematics. Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796. University Sidi Mohamed Department of Mathematics. Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796. University Sidi Mohamed Ben Abdellah Fez, Morocco Abdellah Fez, Morocco

email: hakima.mouanis@usmba.ac.ma

0000-0002-9654-8139

Title:

On a class of semi–normal monoidal functors

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2023-06-04 , Revised: 2024-02-07 , Accepted: 2024-02-08 , Available online: 2024-06-27 , https://doi.org/10.7151/dmgaa.1456

Abstract:

In this paper, we introduce and study an intermediate class, termed semi-normal monoidal functors, between the classes of monoidal and normal monoidal functors. We show that any left, or right, rigid braided category admits a contravariant semi-normal (co)monoidal endofunctor. Several examples are presented, showing the non triviality of this class. Moreover, it is shown that semi-normal monoidal functors from a monoidal category to a braided monoidal category, form a braided monoidal category.

Keywords:

monoidal category, braiding, normal monoidal functor, natural transformation

References:

  1. M. Aguiar and S.A. Mahajan, Monoidal functors, species and Hopf algebras, vol. 29, Providence, RI: American Mathematical Society (2010). { }
    https://doi.org/https://doi.org/10.1090/crmm/029
  2. {H. Choulli, K. Draoui and H. Mouanis}, Quantum determinants in ribbon category, {Categ. Gen. Algebr. Struct. Appl.} 17(1) (2022), 203–232.
    https://doi.org/https://doi.org/10.52547/cgasa.2022.102621
  3. B. Day and C. Pastro, Note on Frobenius monoidal functors, New York J. Math. 14 (2008), 733–742.
  4. {K. Draoui, H. Choulli and H. Mouanis}, Determinant and rank functions in semisimple pivotal Ab-categories, Categ. Gen. Algebr. Struct. Appl. 19(1) (2023), 47–80. { }
    https://doi.org/https://doi.org/10.48308/CGASA.19.1.47
  5. S. Eilenberg and G. M. Kelly, Closed categories, Proc. Conf. Categorical Algebra at La Jolla 1965 (Springer) (1966), 421–562. { }
    https://doi.org/https://doi.org/10.1007/978-3-642-99902-4\_22
  6. P. Freyd and D. Yetter, Braided compact closed categories with application to low dimensional topology, Adv. Math. 77 (1989), 156–182.
  7. A. Joyal and R. Street, Braided monoidal categories, Mathematics Reports 86008, Macquarie University (1986).
  8. C. Kassel, Quantum Groups, Gradute Texts in Mathematics. vol. 155, Springer-verlag (1995). { }
    https://doi.org/https://doi.org/10.1007/978-1-4612-0783-2
  9. S. Mac-Lane, Categories for Working Mathematician, Graduate Texts in Mathematics. vol. 5, Springer-verlag (2013). { }
    https://doi.org/https://doi.org/10.1007/978-1-4757-4721-8
  10. V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, Berlin, New York: De Gruyter (2010). { }
    https://doi.org/https://doi.org/10.1515/9783110221848
  11. V. Turaev and A. Virelizier, Monoidal Categories and Topological Field Theory, Progress in Mathematics, 322, Birkhuser/Springer (2017). { }
    https://doi.org/https://doi.org/10.1007/978-3-319-49834-8

Close