Article in volume
Authors:
Title:
A note on intra regularity on semigroups of partial transformations with invariant set
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 333-341
Received: 2023-02-12 , Revised: 2023-05-15 , Accepted: 2023-05-16 , Available online: 2024-05-13 , https://doi.org/10.7151/dmgaa.1455
Abstract:
Let $ X $ be any non-empty set and $ P(X) $ denote the semigroup (under composition) of partial transformations on a set $ X $. Let $ Y $ be a fixed non-empty subset of $ X $ and
$$ \overline{PT}(X,Y) = \{\alpha \in P(X) : (\mathrm{dom\thinspace} \alpha \cap Y)\alpha \subseteq Y\}. $$
Then $\overline{PT}(X,Y)$ is a semigroup consisting of all mapping in $ P(X) $ that leave $ Y \subseteq X $ invariant.
In this paper,
we present criteria for checking the intra-regularity of elements in $\overline{PT}(X,Y)$ and apply these results to quantify intra-regular elements in $\overline{PT}(X,Y)$, when $X$ is finite.
Keywords:
partial transformation semigroup, intra regularity, invariant set
References:
- W. Choomanee, P. Honyam and J. Sanwong, Regularity in semigroups of transformations with invariant sets, Int. J. Pure Appl. Math. 87(1) (2013) 151–164.
https://doi.org/10.12732/ijpam.v87i1.9 - A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys, 7 (American Mathematical Society, Providence, R.I., 1961).
https://doi.org/10.1090/surv/007.1 - A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Vol. II, Mathematical Surveys, 7 (American Mathematical Society, Providence, R.I., 1967).
https://doi.org/10.1090/surv/007.2 - C. Doss, Certain Equivalence Relations in Transformation Semigroups, Master's thesis, directed by D.D. Miller (University of Tennessee, 1955).
- P. Honyam and J. Sanwong, Semigroups of transformations with invariant set, J. Korean Math. Soc. 48(2) (2011) 289–300.
https://doi.org/10.4134/JKMS.2011.48.2.289 - J.M. Howie, Fundamentals of Semigroup Theory (London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995).
- K.D. Jr. Magill, Subsemigroups of $S(X)$, Math. Japonica 11 (1966) 109–115.
Close