Article in volume
Authors:
Title:
Solvability of B-algebras
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 319-331
Received: 2023-02-03 , Revised: 2023-05-13 , Accepted: 2023-05-15 , Available online: 2024-03-05 , https://doi.org/10.7151/dmgaa.1452
Abstract:
In this paper, we introduce and characterize solvable B-algebras. We also establish some of the basic properties of solvable B-algebras.
Keywords:
solvable B-algebras
References:
- S.S. Ahn and K. Bang, On fuzzy subalgebras in B-algebras, Commun. Korean Math. Soc. 18 (2003) 429–437.
https://doi.org/10.4134/CKMS.2003.18.3.429 - P.J. Allen, J. Neggers and H.S. Kim, B-algebras and groups, Sci. Math. Jpn. 9 (2003) 159–165.
- R. Ameri, A. Borumand Saied, S.A. Nematolah Zadeh, A. Radfar and R.A. Borzooei, On finite B-algebra, Afr. Mat. 26 (2015) 825–847.
https://doi.org/10.1007/s13370-014-0249-8 - A.Z. Baghini and A.B. Saeid, Redefined fuzzy B-algebras, Fuzzy Optimization and Decision Making 7 (2008) 373–386.
https://doi.org/10.1007/s10700-008-9045-y - A.Z. Baghini and A.B. Saeid, Generalized Fuzzy B-Algebras, Fuzzy Information and Engineering 40 (2007) 226–233.
https://doi.org/10.1007/978-3-540-71441-5$\underline{~}$25 - M. Balamurugan, G. Balasubramanian and C. Ragavan, Translations of intuitionistic fuzzy soft structure of B-algebras, Malaya J. Mat. 6 (2018) 685–700.
https://doi.org/10.26637/MJM0603/0033 - J.S. Bantug and J.C. Endam, Lagrange's Theorem for B-algebras, Int. J. Algebra 11 (2017) 15–23.
https://doi.org/10.12988/ija.2017.616 - J.S. Bantug and J.C. Endam, Maximal Bp-subalgebras of B-algebras, Discuss. Math. Gen. Algebra Appl. 40 (2020) 25–36.
https://doi.org/doi:10.7151/dmgaa.1323 - J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001) 1–6, .
- J.C. Endam, A note on maximal Bp-subalgebras of B-algebras, Afr. Mat. 34 (2023).
https://doi.org/10.1007/s13370-023-01042-y - J.C. Endam, Centralizer and Normalizer of B-algebras, Sci. Math. Jpn. 81 (2018) 17–23.
- J.C. Endam and E.C. Banagua, B-algebras Acting on Sets, Sci. Math. Jpn. 2 (Online-2018) 1–7.
- J.C. Endam and J.S. Bantug, Cauchy's Theorem for B-algebras, Sci. Math. Jpn. 82 (2019) 221–228.
- J.C. Endam and J.P. Vilela, The Second Isomorphism Theorem for B-algebras, Appl. Math. Sci. 8 (2014) 1865–1872.
https://doi.org/10.12988/ams.2014.4291 - J.C. Endam and R.C. Teves, Some Properties of Cyclic B-algebras, Int. Math. Forum. 11 (2016) 387–394.
https://doi.org/10.12988/imf.2016.6111 - N.C. Gonzaga and J.P. Vilela, On Cyclic B-algebras, Appl. Math. Sci. 9 (2015) 5507–5522.
https://doi.org/10.12988/ams.2015.54299 - N.C. Gonzaga and J.P. Vilela, Fuzzy order relative to fuzzy B-algebras, Italian J. Pure Appl. Math. 42 (2019) 485–493, .
- Y.B. Jun, E.H. Roh and H.S. Kim, On fuzzy B-algebras, Czechoslovak Math. J. 52 (2002) 375–384, .
- H.S. Kim and H.G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. 62 (2005) 7–12.
- Y.H. Kim and S.J. Yoem, Quotient B-algebras via Fuzzy Normal B-algebras, Honam Mathematical Journal 30 (2008) 21–32.
https://doi.org/10.5831/HMJ.2008.30.1.021 - J. Neggers and H.S. Kim, On B-algebras, Mat. Vesnik 54 (2002) 21–29.
- J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002) 207–214.
- A.B. Saeid, Fuzzy Topological B-algebras, International Journal of Fuzzy Systems 8 (2006) 160–164.
- A.B. Saeid, Interval-valued Fuzzy B-algebras, Iranian Journal of Fuzzy Systems 3 (2006) 63–73.
https://doi.org/10.22111/IJFS.2006.467 - T. Senapati, M. Bhowmik and M. Pal, Fuzzy Dot Subalgebras and Fuzzy Dot Ideals of B-algebras, J. Uncertain Syst. 8 (2014) 22–30.
- T. Senapati, M. Bhowmik and M. Pal, Fuzzy Closed Ideals of B-Algebras, IJCSET 1 (2011) 669–673.
- T. Senapati, Translations of Intuitionistic Fuzzy B-algebras, Fuzzy Information and Engineering 7 (2015) 389–404.
https://doi.org/10.1016/j.fiae.2015.11.001 - R. Soleimani, A note on automorphisms of finite B-algebras, Afr. Mat. 29 (2018) 263–275.
https://doi.org/10.1007/s13370-017-0540-6 - A. Walendziak, Some Axiomatizations of B-algebras, Math. Slovaca 56 (2006) 301–306.
- A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Jpn. 62 (2005) 1–6.
Close