Article in volume
Authors:
Title:
Algebras of full terms constructed from transformations with fixed set
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 44(1) (2024) 127-146
Received: 2022-08-03 , Revised: 2022-11-26 , Accepted: 2022-11-27 , Available online: 2024-02-08 , https://doi.org/10.7151/dmgaa.1451
Abstract:
Based on the notion of full transformations with fixed set, in this paper, we present a novel concept of $n$-ary $Fix(I_n,Y)$-full terms. This term can be considered as a generalization of strongly full terms, permutational full terms and full terms. Together with the superposition operation, one can form a Menger algebra of rank $n$. The freeness of such algebra with respect to a variety of algebras of the same types is discussed. Furthermore, we apply hypersubstitution theory to define a $Fix(I_n,Y)$-full closed identity, a $Fix(I_n,Y)$-full closed variety and present some concrete examples.
Keywords:
transformations with fixed set, full term, Menger algebra, hypersubstitution
References:
- T. Changphas and K. Denecke, Green's relations on the seminearring of full hypersubstitutions of type $(n)$, Algebra Discrete Math. 2 (2003) 6–19.
- K. Denecke, The partial clone of linear terms, Sib. Math J. 57(4) (2016) 589–598.
https://doi.org/10.1134/S0037446616040030 - K. Denecke and H. Hounnon, Partial Menger algebras of terms, Asian-Eur. J. Math. 14(6) (2021) 2150092.
https://doi.org/10.1142/S1793557121500923 - K. Denecke and L. Freiberg, The algebra of strongly full terms, Novi Sad J. Math. 34 (2004) 87–98.
- K. Denecke and P. Jampachon, Clones of full terms, Algebra and Discrete Math. 4 (2004) 1–11.
- K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publishers, 2000).
https://doi.org/10.1201/9781482287516 - W.A. Dudek and V.S. Trohimenko, Algebras of Multiplace Functions (De Gruyter, Berlin, 2012).
https://doi.org/10.1515/9783110269307 - W.A. Dudek and V.S. Trokhimenko, Menger algebras of associative and self-distributive $n$-ary operations, Quasigroups Relat. Syst. 26 (2018) 45–52.
- E. Graczynska and D. Schweigert, Hypervarieties of a given type, Algebra Univ. 27 (1990) 305–318.
https://doi.org/10.1007/BF01190711 - Y. Guellouma and H. Cherroun, From tree automata to rational tree expressions, Int. J. Found. Comput. Sci. 29(6) (2018) 1045–1062.
https://doi.org/10.1142/S012905411850020X - P. Honyam and J. Sanwong, Semigroups of transformations with fixed sets, Quaest Math. 36 (2013) 79–92.
https://doi.org/10.2989/16073606.2013.779958 - P. Kitpratyakul and B. Pibaljommee, Semigroups of an inductive composition of terms, Asian-Eur. J. Math. 15(2) (2022) 2250038.
https://doi.org/10.1142/S1793557122500383 - J. Koppitz and K. Denecke, M-Solid Varieties of Algebras (Springer, 2006).
- T. Kumduang and S. Leeratanavalee, Left translations and isomorphism theorems of Menger algebras, Kyungpook Math. J. 61(2) (2021) 223–237.
https://doi.org/10.5666/KMJ.2021.61.2.223 - S. Leeratanavalee, Submonoids of generalized hypersubstitutions, Demonstr. Math. 40 (2007) 13–22.
https://doi.org/10.1515/dema-2007-0103 - N. Lekkoksung and S. Lekkoksung, On partial clones of $k$-terms, Discuss. Math. Gen. Algebra Appl. 41 (2021) 361–379.
https://doi.org/10.7151/dmgaa.1376 - A. Nongmanee and S. Leeratanavalee, v-regular ternary Menger algebras and left translations of ternary Menger algebras, Mathematics 9(21) (2021) 2691.
https://doi.org/10.3390/math9212691 - S. Phuapong and T. Kumduang, Menger algebras of terms induced by transformations with restricted range, Quasigroups Relat. Syst. 29 (2021) 255–268.
- S. Phuapong and S. Leeratanavalee, The algebra of generalized full terms, Int. J. Open Problems Compt. Math. 4 (2011) 54–65.
- S. Phuapong and C. Pookpienlert, $S(\bar{n_i},Y_i)$-terms and their algebraic properties, Thai J. Math. 20(1) (2021) 337–346.
- K. Wattanatripop and T. Changphas, The clone of $K^*(n, r)$-full terms, Discuss. Math. Gen. Algebra Appl. 39(2) (2019) 277–288.
https://doi.org/10.7151/dmgaa.1319 - K. Wattanatripop and T. Changphas, The Menger algebra of terms induced by order-decreasing transformations, Commun. Algebra. 49(7) (2021) 3114–3123.
https://doi.org/10.1080/00927872.2021.1888385
Close