DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

L. Heboub

Lakhdar Heboub

Laboratory of Pures and Applied Mathematics
Department of Mathematics
Mohamed Boudiaf University of M'sila

email: lakhdar.heboub@univ-msila.dz

D. Mihoubi

Douadi Mihoubi

Laboratory of Pures and Applied Mathematics
Department of Mathematics
Mohamed Boudiaf University of M'sila
M'sila 28000, Algeria

email: douadi.mihoubi@univ-msila.dz

Title:

Some $LCD$ cyclic codes of length $2p$ over finite fields

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 249-259

Received: 2022-09-08 , Revised: 2023-01-10 , Accepted: 2023-01-10 , Available online: 2023-11-15 , https://doi.org/10.7151/dmgaa.1447

Abstract:

In this paper, we explicitly determine the $LCD$ minimal and maximal cyclic codes of length $2p$ over finite fields $\mathbb{F}_{q}$ with $p$ and $q$ are distinct odd primes and $\phi (p)=p-1$ is the multiplicative order of $q$ modulo $2p.$ We show that, every $LCD$ maximal cyclic code is a direct sum of $LCD$ minimal cyclic codes.

Primary keywords:

linear and cyclic codes

Secondary keywords:

LCD codes, reversible codes.

References:

  1. S.K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^{n}$, Finite Fields Appl. 5 (1999) 177–187.
    https://doi.org/10.1006/ffta.1998.0238
  2. S. Batra and S.K. Arora, Some cyclic codes of length $2p^{n}$, Des. Codes Cryptogr. 61 (1) (2011) 41–69.
    https://doi.org/10.1007/s10623-010-9438-0
  3. W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, Cambridge, 2003).
  4. R. Lidl and G. Pilz, Applied Abstract Algebra (Springer-Verlag, New York, 1998).
  5. S. Ling and C. Xing, Coding Theory, A First Course (Cambridge University Press, 2004).
  6. C. Li, C. Ding and S. Li, $LCD$ cyclic codes over finite fields, IEEE Trans. Inf. Theory 63 (2017) 4344–4356.
    https://doi.org/10.1109/TIT.2017.2672961
  7. J.L. Massey, Reversible codes, Information and Control 7 (1964) 369–380.
    https://doi.org/10.1016/S0019-9958(64)90438-3
  8. J.L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992) 337–342.
    https://doi.org/10.1016/0012-365X(92)90563-U
  9. V. Pless, Introduction to the Theory of Error Correcting Codes (Wiley, New York, 1998).
  10. M. Pruthi and S.K. Arora, Minimal cyclic codes of prime power length, Finite Fields Appl. 3 (1997) 99–113.
    https://doi.org/10.1006/ffta.1998.0238
  11. X. Yang and J.L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994) 391–393.
    https://doi.org/10.1016/0012-365X(94)90283-6

Close