DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

A.R. Ashrafi

Ali Reza Ashrafi

University of Kashan

email: ashrafi@kashanu.ac.ir

0000-0002-2858-0663

B. Jahangiri

Bardia Jahangiri

University of Kashan

email: bardia.jahangiri@yahoo.com

0000-0003-2048-4498

M. Yousefian-Arani

Mohammad Moein Yousefian-Arani

University of Kashan

email: momoeysfn@gmail.com

0000-0002-2591-9254

Title:

On the number of group homomorphisms between certain groups

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 277-286

Received: 2022-11-17 , Revised: 2023-02-21 , Accepted: 2023-02-21 , Available online: 2023-09-25 , https://doi.org/10.7151/dmgaa.1443

Abstract:

Let $H$ be a finite abelian group and $Dih(H)$ $=$ $\langle H, b | b^2 = 1 \ \& \ bhb^{-1} = h^{-1}; \ \forall h \in H \rangle$ be the generalized dihedral group of $H$. The aim of this paper is to compute the number of group homomorphisms between two generalized dihedral groups and a generalized dihedral group and an abelian group. One of these results generalized an earlier work by J. W. Johnson published in 2013.

Primary keywords:

group homomorphism, generalized dihedral group

Secondary keywords:

abelian group

References:

  1. M. Bate, The number of homomorphisms from finite groups to classical groups, J. Algebra 308 (2007) 612–628.
    https://doi.org/10.1016/j.jalgebra.2006.09.003
  2. N. Chigira and Y. Takegahara, On the number of homomorphisms from a finite group to a general linear group, J. Algebra 232 (2000) 236–254.
    https://doi.org/10.1006/jabr.1999.8398
  3. J.A. Gallian and J. Van Buskirk, The number of homomorphisms from $Z_m$ into $Z_n$, Amer. Math. Monthly 91 (1984) 196–197.
    https://doi.org/10.2307/2322360
  4. J.W. Johnson, The number of group homomorphisms from $D_m$ into $D_n$, College Math. J. 44 (2013) 190–192.
    https://doi.org/10.4169/college.math.j.44.3.190
  5. H. Katsurada, Y. Takegahara and T. Yoshida, The number of homomorphisms from a finite abelian group to a symmetric group, Comm. Algebra 28 (2000) 2271–2290.
    https://doi.org/10.1080/00927870008826958
  6. M. Liebeck and A. Shalev, The number of homomorphisms from a finite group to a general linear group, Comm. Algebra 32 (2004) 657–661.
    https://doi.org/10.1081/AGB-120027921
  7. D. Matei and A. Suciu, Counting homomorphisms onto finite solvable groups, J. Algebra 286 (2005) 161–186.
    https://doi.org/10.1016/j.jalgebra.2005.01.009
  8. D.J. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, 1996).
    https://doi.org/10.1007/978-1-4419-8594-1
  9. Y. Takegahara, The number of homomorphisms from a finite abelian group to a symmetric group (II), Comm. Algebra 44 (2016) 2402–2442.
    https://doi.org/10.1080/00927872.2015.1053896
  10. Y. Takegahara, A generating function for the number of homomorphisms from a finitely generated Abelian group to an alternating group, J. Algebra 248 (2002) 554–574.
    https://doi.org/10.1006/jabr.2000.8666
  11. The GAP Team, Group, GAP – Groups, Algorithms, and Programming (Version 4.5.5, 2012), http://www.gap-system.org.
  12. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York-Amsterdam-Oxford, 1982).
  13. G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1–6.

Close