DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

J. Goswami

Jituparna Goswami

Gauhati University, Guwahati-14, Assam, India

email: jituparnagoswami18@gmail.com

0000-0002-1786-752X

S. Bhowmick

Sumon Bhowmick

Department of Mathematics
Gauhati University
Guwahati-14, Assam, India

email: sumonbhowmick31@gmail.com

S. Kar

Sukhendu Kar

Department of Mathematics
Jadavpur University
Kolkata-32, West Bengal, India

email: karsukhendu@yahoo-co.in

Title:

$S$−$k$−prime and $S$−$k$−semiprime ideals of semirings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 301-317

Received: 2022-08-04 , Revised: 2023-05-11 , Accepted: 2023-05-11 , Available online: 2023-09-01 , https://doi.org/10.7151/dmgaa.1442

Abstract:

Let $R$ be a commutative ring and $S$ a multiplicatively closed subset of $R$. Hamed and Malek [7] defined an ideal $P$ of $R$ disjoint with $S$ to be an $S$-prime ideal of $R$ if there exists an $s \in S$ such that for all $a, b \in R$ if $ab \in P$, then $sa \in P$ or $sb \in P$. In this paper, we introduce the notions of $S$-$k$-prime and $S$-$k$-semiprime ideals of semirings, $S$-$k$-$m$-system, and $S$-$k$-$p$-system. We study some properties and characterizations for $S$-$k$-prime and $S$-$k$-semiprime ideals of semirings in terms of $S$-$k$-$m$-system and $S$-$k$-$p$-system respectively. We also introduce the concepts of $S$-prime semiring and $S$-semiprime semiring and study the characterizations for $S$-$k$-prime and $S$-$k$-semiprime ideals in these two semirings.

Primary keywords:

Semiring, $S$−$k$prime ideal, $S$−$k$−semiprime ideal

Secondary keywords:

$S$−prime semiring, $S$−semiprime semiring

References:

  1. F.A.A. Almahdi, E.M. Bouba and M. Tamekkante, On weakly S-prime ideals of commutative rings, Analele stiintifice ale Universitatii Ovidius Constanta, Seria Matematică 29 (2021) 173–186.
    https://doi.org/10.2478/auom-2021-0024
  2. R.E. Atani and S.E. Atani, Ideal theory in commutative semirings, Buletinul Academiei De Stiinte A Republicii Moldova Matematica 57 (2008) 14–23.
  3. J.N. Chaudhari, $2$-absorbing ideals in semirings, Int. J. Algebra 6 (2012) 265–270.
  4. M.K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups And Related Systems 20 (2012) 197–202.
  5. J.S. Golan, Semirings and Affine Equations over Them: Theory and Applications (Springer Dordrecht, 2003).
    https://doi.org/10.1007/978-94-017-0383-3
  6. J.S. Golan, Semirings and their Applications (Kluwer Academic Publishers, Dordrecht, 1999).
    https://doi.org/10.1007/978-94-015-9333-5
  7. A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 61 (2020) 533-542.
    https://doi.org/10.1007/s13366-019-00476-5
  8. U. Hebisch and H. Weinert, Semirings: algebraic theory and applications in computer science (World Scientific, 1998).
    https://doi.org/10.1142/3903
  9. T.Y. Lam, A first course in noncommutative rings (Springer New York, NY, 2001).
    https://doi.org/10.1007/978-1-4419-8616-0
  10. P. Lescot, Prime and primary ideals in semirings, Osaka J. Math. 52 (2015) 721–737.
    https://doi.org/10.18910/57677
  11. S. Purkait, T.K. Dutta and S. Kar, k-prime and k-semiprime ideals of semirings, Asian-European J. Math. 14 (2021) 2150041-(1–12).
    https://doi.org/10.1142/S1793557121500418
  12. M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Int. J. Math. and Math. Sci. 15 (1992) 347–350.
    https://doi.org/10.1155/S0161171292000437
  13. M.K. Sen and M.R. Adhikari, On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703.
    https://doi.org/10.2307/2160106
  14. S. Visweswaran, Some results on S-primary ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 63 (2022) 247–266.
    https://doi.org/10.1007/s13366-021-00580-5

Close