Article in volume
Authors:
Title:
$S$−$k$−prime and $S$−$k$−semiprime ideals of semirings
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 301-317
Received: 2022-08-04 , Revised: 2023-05-11 , Accepted: 2023-05-11 , Available online: 2023-09-01 , https://doi.org/10.7151/dmgaa.1442
Abstract:
Let $R$ be a commutative ring and $S$ a multiplicatively closed subset of $R$.
Hamed and Malek [7] defined an ideal $P$ of $R$ disjoint with $S$
to be an $S$-prime ideal of $R$ if there exists an $s \in S$ such that for all
$a, b \in R$ if $ab \in P$, then $sa \in P$ or $sb \in P$. In this paper, we
introduce the notions of $S$-$k$-prime and $S$-$k$-semiprime ideals of
semirings, $S$-$k$-$m$-system, and $S$-$k$-$p$-system. We study some properties
and characterizations for $S$-$k$-prime and $S$-$k$-semiprime ideals of
semirings in terms of $S$-$k$-$m$-system and $S$-$k$-$p$-system respectively.
We also introduce the concepts of $S$-prime semiring and $S$-semiprime semiring
and study the characterizations for $S$-$k$-prime and $S$-$k$-semiprime ideals
in these two semirings.
Primary keywords:
Semiring, $S$−$k$prime ideal, $S$−$k$−semiprime ideal
Secondary keywords:
$S$−prime semiring, $S$−semiprime semiring
References:
- F.A.A. Almahdi, E.M. Bouba and M. Tamekkante, On weakly S-prime ideals of commutative rings, Analele stiintifice ale Universitatii Ovidius Constanta, Seria Matematică 29 (2021) 173–186.
https://doi.org/10.2478/auom-2021-0024 - R.E. Atani and S.E. Atani, Ideal theory in commutative semirings, Buletinul Academiei De Stiinte A Republicii Moldova Matematica 57 (2008) 14–23.
- J.N. Chaudhari, $2$-absorbing ideals in semirings, Int. J. Algebra 6 (2012) 265–270.
- M.K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups And Related Systems 20 (2012) 197–202.
- J.S. Golan, Semirings and Affine Equations over Them: Theory and Applications (Springer Dordrecht, 2003).
https://doi.org/10.1007/978-94-017-0383-3 - J.S. Golan, Semirings and their Applications (Kluwer Academic Publishers, Dordrecht, 1999).
https://doi.org/10.1007/978-94-015-9333-5 - A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 61 (2020) 533-542.
https://doi.org/10.1007/s13366-019-00476-5 - U. Hebisch and H. Weinert, Semirings: algebraic theory and applications in computer science (World Scientific, 1998).
https://doi.org/10.1142/3903 - T.Y. Lam, A first course in noncommutative rings (Springer New York, NY, 2001).
https://doi.org/10.1007/978-1-4419-8616-0 - P. Lescot, Prime and primary ideals in semirings, Osaka J. Math. 52 (2015) 721–737.
https://doi.org/10.18910/57677 - S. Purkait, T.K. Dutta and S. Kar, k-prime and k-semiprime ideals of semirings, Asian-European J. Math. 14 (2021) 2150041-(1–12).
https://doi.org/10.1142/S1793557121500418 - M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Int. J. Math. and Math. Sci. 15 (1992) 347–350.
https://doi.org/10.1155/S0161171292000437 - M.K. Sen and M.R. Adhikari, On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703.
https://doi.org/10.2307/2160106 - S. Visweswaran, Some results on S-primary ideals of a commutative ring, Beiträge Zur Algebra Und Geometrie/Contributions To Algebra And Geometry 63 (2022) 247–266.
https://doi.org/10.1007/s13366-021-00580-5
Close