Article in volume
Authors:
Title:
A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 44(1) (2024) 111-125
Received: 2022-10-10 , Revised: 2022-11-12 , Accepted: 2022-11-14 , Available online: 2023-08-23 , https://doi.org/10.7151/dmgaa.1440
Abstract:
The additive monoid of non-negative integers $\mathbb{N}$ is isomorphic to the right unit submonoid of the (bisimple) bicyclic semigroup $B=\mathbb{N}×\mathbb{N}$. The aim of this note is to construct a similar pair of monoids $(B^{\dagger}=\mathbb{N}×\mathbb{N},B^{\ddagger}=\mathbb{N}×\mathbb{N}×\mathbb{N}×\mathbb{N})$.
The monoid $B^{\dagger}$ give rise to a bisimple inverse monoid $B^{\ddagger}$ of quadruples of non-negative integers like as Warne's 2-dimensional bicyclic semigroup. The links with the monoid of non-negative integers $\mathbb{N}$ and with the bicyclic semigroup may turn out to be expedient also for the computation of the corresponding Möbius functions.
Keywords:
bisimple inverse monoid, bicyclic semigroup, Möbius function
References:
- A. H. Clifford, A class of d-simple semigroups, Amer. J. Math. 15 (1953), 541-556.
- P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212 (2008), 2413-2439. https://doi.org/10.1016/j.jpaa.2008.03.027
- A. Geroldinger and E. D. Schwab, Sets of lengths in atomic unit-cancellative finitely presented monoids, Colloq. Math. 151 (2018), 171-187. DOI: 10.4064/cm7242-6-2017
- P. Haukkanen and E. D. Schwab, A unique factorization in commutative Möbius monoids, Int. J. Number Theory 4 (2008), 549-561. https://doi.org/10.1142/S1793042108001523
- P. Leroux, Les catégories de Möbius, Cah. Topol. Géom. Diffé. Catég. 16 (1975), 280-282.
- M. Petrich, Inverse semigroups, John Wiley $\&$ Sons, New York, 1984.
- E. D. Schwab, Möbius monoids and their connection to inverse monoids, Semigroup Forum 90 (2015), 694-720. https://doi.org/10.1007/s00233-014-9666-0
- E. D. Schwab, Gauge inverse monoids, Algebra Colloq. 27 (2020), 181-192. https://doi.org/10.1142/S1005386720000152
- E. D. Schwab, A note on Möbius functions and a breaking process, J. Algebra Appl. 21 (2022), 2250108. https://doi.org/10.1142/S0219498822501080
- E. D. Schwab and G. Schwab, A Möbius arithmetic incidence function, Notes on Number Theory and Discrete Mathematics 21(3) (2015), 27-34.
- Y. Shang and L. Wang, A class of regular simple $\omega^{2}$-semigroups I, Advances in Mathematics (China) 42 (2013), 631-643.
- R. J. Warne, A class of bisimple inverse semigroups, Pacific J. Math. 18 (1966), 563-577.
Close