DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

V . Selvan

Venkatachalam Selvan

Associate Professor
Department of Mathematics
RKM Vivekananda College
Chennai - 600004, India

email: venselvan@gmail.com

0000-0001-8183-3423

S. Ganesh

Swaminathan Ganesh

Research Scholar
Department of Mathematics
RKM Vivekananda College
Chennai - 600004, India

email: madmaths007@gmail.com

0000-0003-3411-8907

Title:

Reverse derivations and generalized reverse derivations in semirings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(1) (2024) 217-232

Received: 2022-11-22 , Revised: 2023-01-15 , Accepted: 2023-01-22 , Available online: 2023-07-12 , https://doi.org/10.7151/dmgaa.1439

Abstract:

In this article we extend the results on reverse derivation in rings to semirings. First we dispose of reverse derivations in prime semirings analogous to Herstein's result [7]. Then, we prove that reverse derivation is just an ordinary derivation in semiprime semirings if and only if it is a central derivation. We also define generalized reverse derivations and obtain some commutativity results which extend the results in [11]. The primary technique we use in these results is the use of derivations and reverse derivations in ring of differences $R^\Delta$ corresponding to the semiring $R$ and the fact that $R$ is embedded in $R^\Delta$. This fact allows us to travel back and forth between $R$ and $R^\Delta$ and serve as a key tool in obtaining the desired results.

Keywords:

Reverse derivations, derivations, semirings, l-generalized reverse derivations, r-generalized reverse derivations, generalized reverse derivations, and semiprime semirings

References:

  1. Aboubakr. A. and González. S., Generalized reverse derivation on semiprime rings, Siberian Mathematical Journal 56 (2015) 199–205.
    https://doi.org/10.1134/S0037446615020019
  2. Ahmed. Y. and Dudek. W., On Generalised Reverse Derivations in Semirings, Bull. Iran. Math. Soc. 48 (2022) 895–904.
    https://doi.org/10.1007/s41980-021-00552-4
  3. Dimitrov. S. I., Derivations on semirings, Appl. Math. in Eng. and Econ. – 43th. Int. Conf., AIP Conf. Proc. 1910 (2017) 060011.
    https://doi.org/10.1063/1.5014005
  4. Ganesh. S. and Selvan. V., Posner's theorems in Semirings, submitted for publication in Indian Journal of Pure and Applied Mathematics xx (2022) 0–0.
  5. Ganesh. S. and Selvan. V., Jordan Structures in Semirings, Rendiconti del Circolo Matematico di Palermo Series 2(2022), in press.
    https://doi.org/10.1007/s12215-022-00838-4
  6. Golan. J. S., Semirings and Their Applications (Kluwer Academic Publishers, 1999).
  7. Herstein. I. N., Jordan Derivations of Prime Rings, Proceedings of American Mathematical Society 8 (1957) 1104–1110.
    https://doi.org/10.1090/S0002-9939-1957-0095864-2
  8. Herstein. I. N., Rings with involution (The University of Chicago Press, 1976).
  9. Mohammad Samman and Nouf Alyamani, Derivations and Reverse Derivations in Semiprime Rings, International Mathematical Forum 2 (2007) 1895–1902.
    https://doi.org/10.12988/imf.2007.07168
  10. Sugantha Meena. N. and Chandramouleeswaran. M., Reverse derivation on semirings, International Journal of Pure and Applied Mathematics 104 (2015) 203–212.
    https://doi.org/10.12732/ijpam.v104i2.5
  11. Tiwari. S. K, Sharma. R. K. and Dhara. B., Some theorems of commutativity on semiprime rings with mappings, Southeast Asian Bulletin of Mathematics 42 (2018) 279–292.

Close