DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

R. Wijarajak

Rattiya Wijarajak

Department of Mathematics and Statistics
Faculty of Science and Technology
Thammasat University (Rangsit Campus)
Pathum Thani, 12120, Thailand

email: rattiya.wija@dome.tu.ac.th

Y. Chaiya

Yanisa Chaiya

Department of Mathematics and Statistics
Faculty of Science and Technology
Thammasat University (Rangsit Campus)
Pathum Thani, 12120, Thailand

email: yanisa@mathstatsci.tu.ac.th

Title:

A Note on the Abundance of Partial Transformation Semigroups with Fixed Point Sets

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 241-247

Received: 2021-10-22 , Revised: 2022-03-07 , Accepted: 2022-03-07 , Available online: 2023-05-11 , https://doi.org/10.7151/dmgaa.1438

Abstract:

Given a non-empty set $X$ and let $P(X)$ be the partial transformation semigroup on $X$. For a fixed non-empty subset $Y$ of $X$, let $$ PFix(X,Y)=\{\alpha\in P(X):y\alpha=y \textrm{ for all } y\in Y\}. $$ Then $PFix(X,Y)$ is a subsemigroup of $P(X)$. In this paper, we show that $PFix(X,Y)$ is always abundant, even if it is not regular. Moreover, unit regular and coregular elements of such semigroup are all completely characterized.

Keywords:

partial transformation semigroup, abundance, unit regularity, coregularity

References:

  1. Y. Chaiya, P. Honyam and J. Sanwong, Maximal subsemigroups and finiteness conditions on transformation semigroups with fixed sets, Turkish J. Math. 41 (2017) 43–54.
  2. Y. Chaiya, P. Honyam and J. Sanwong, Natural Partial Orders on Transformation Semigroups with Fixed Sets, Int. J. Math. Math. Sci. Article ID 2759090 (2016) 1-7.
  3. R. Chinram and W. Yonthanthum, Regularity of the semigroups of transformations with a fixed point set, Thai J. Math. 18 (2020) 1261–1268.
  4. P. Honyam and J.Sanwong, Semigroups of transformations with fixed sets, Quaest. Math. 36 (2013) 79-92.
  5. J.M. Howie, Fundamentals of Semigroup Theory (London Mathematics Society Monographs, New Series, vol. 12. Clarendon Press, Oxford, 1995).
  6. I. Dimitrova and J.Koppitz, Coregular Semigroups of Full Transformations, Demonstr. Math. XLIV(4) (2011) 739–753.
  7. E.S. Lyapin, Semigroups (Am. Math. Soc, Providence, 1963).
  8. N. Nupo and C. Pookpienlert, On connectedness and completeness of Cayley digraphs of transformation semigroups with fixed sets, Int. Electron. J. Algebra 28 (2020) 110–126.
  9. N. Nupo and C. Pookpienlert, Domination parameters on Cayley digraphs of transformation semigroups with fixed sets, Turkish J. Math. 45(4) (2021) 1775–1788.

Close