DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

P.S. Divya

P.S. Divya

Department of Mathematics
Karunya Institute of Technology and Sciences
Coimbatore-641114
Tamil Nadu, India

email: divyadeepam@karunya.edu

J. Catherine Grace John

J. Catherine Grace John

Department of Mathematics\
Karunya Institute of Technology and Sciences
Coimbatore-641114
Tamil Nadu, India

email: catherine@karunya.edu

J. Veninstine Vivik

J. Veninstine Vivik

Department of Mathematics
Karunya Institute of Technology and Sciences
Coimbatore-641114
Tamil Nadu, India

email: veninstine@karunya.edu

Title:

Characterizations of $f$-prime ideals in posets

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 413-426

Accepted: 2023-04-03 , Available online: 2023-04-03 , https://doi.org/10.7151/dmgaa.1437

Abstract:

In this article, we look at the ideas of $f$-prime ideals and $f$-semi-prime ideals of posets, as well as the many features of $f$-primeness and $f$-semi-primeness in posets. Classifications of $f$ semi-prime ideals in posets are derived, as well as representations of a $f$ semi-prime ideal to be $f$ prime. Furthermore, the $f$-prime ideal separation theorem is addressed.

Keywords:

poset, semi-ideals, $f$-prime ideal, $f$-semi prime ideal, $m$-system

References:

  1. S. Bhavanari and R. Wiegandtt, On the f-prime radical of near-rings, Nearrings and Nearfields, Springer (2005) 293–299.
    https://doi.org/10.1007/1-4020-3391-5_16
  2. J. Catherine Grace John, and B. Elavarasan, Primeness of extension of semi-ideals in posets, Appl. Math. Sci. 164(8) (2014) 8227–8232.
    https://doi.org/10.12988/ams.2014.410840
  3. J. Catherine Grace John and B. Elavarasan, Strongly prime and strongly semiprime ideals in Posets, Glob. J. Pure Appl. Math. 11(5) (2015) 2965–2970.
  4. J. Catherine Grace John and B. Elavarasan, Strongly prime ideals and primal ideals in posets, Kyungpook Math. J. 56(3) (2016) 727–735.
    https://doi.org/10.5666/KMJ.2016.56.3.727
  5. J. Catherine Grace John and B. Elavarasan, $z^{J}$-Ideals and Strongly Prime Ideals in Posets, Kyungpook Math. J. 57(3) (2017) 385–391.
    https://doi.org/10.5666/KMJ.2017.57.3.385
  6. J. Catherine Grace John, Strongly Prime Radicals and S-Primary Ideals in Posets, Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy, Springer (2022) 3–11.
  7. N.J. Groenewald and P.C. Potgieter, A generalization of prime ideals in near rings, Comm. Algebra 12 (1984) 1835–1853.
  8. Z. Gu, On f-prime radical in ordered semigroups, Open Math. 16(1) (2018) 574–580.
    https://doi.org/10.1515/math-2018-0053
  9. R. Halaš, On extensions of ideals in posets, Discrete Math. 308(21) (2008) 4972–4977.
    https://doi.org/10.1016/j.disc.2007.09.022
  10. D.F. Hsu, On prime ideals and primary decompositions in $Γ$-rings, Math. Japonicae 2 (1976) 455–460.
  11. V.S. Kharat and K.A. Mokbel, Primeness and semiprimeness in posets, Math. Bohem. 134(1) (2009) 19–30.
    https://doi.org/10.21136/MB.2009.140636
  12. H. McCoy, Prime ideals in general rings, Am. J. Math. 71(4) (1949) 823–833.
  13. K.A. Mokbel, $\alpha$-ideals in 0-distributive posets, Math. Bohem. 140(3) (2015) 319–328.
    https://doi.org/10.21136/MB.2015.144398
  14. K. Murata, Y. Kurata and H. Marubayashi, A generalization of prime ideals in rings, Osaka J. Math. 6 (1969) 291–301.
    https://doi.org/10.3792/pja/1195520862
  15. Y. Rav, Semiprime ideals in general lattices, J. Pure Appl. Algebra 56(2) (1989) 105–118.
    https://doi.org/10.1016/0022-4049(89)90140-0
  16. V. Sambasiva Rao and B. Satyanarayana, The prime radical in near-rings, Indian J. Pure Appl. Math. 15 (1984) 361–364.
  17. S.K. Sardar and S. Goswami, f-Prime Radical of Semirings, Southeast Asian Bull. Math 35(2) (2011) 310–328.
  18. A.P.J. Van der Walt, Contributions to ideal theory in general rings, in: Proc. Kon. Ned. Akad. Wetensch., Ser. A 67 (1964) 68–77.
  19. P. Venkatanarasimhan, Semi-ideals in posets, Math. Ann. 185(4) (1970) 338–348.
  20. P. Venkatanarasimhan, Pseudo-complements in posets, Proc. Amer. Math. Soc. 28(1) (1971) 9–17.

Close