DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

M. Sambasiva Rao

M. Sambasiva Rao

Department of Mathematics
MVGR College of Engineering, Chintalavalasa
Vizianagaram, Andhra Pradesh, India-535005

email: mssraomaths35@rediffmail.com

0000-0002-3927-4207

Title:

$\sigma$-filters of distributive lattices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(2) (2024) 261-276

Accepted: 2023-02-21 , Available online: 2024-09-10 , https://doi.org/10.7151/dmgaa.1436

Abstract:

The concept of $\sigma $-filters is introduced in distributive lattices and studied some properties of these classes of filters. Two sets of equivalent conditions are derived one for every $\mu $-filter to become a $\sigma $-filter and the other for every filter to become a $\sigma $-filter of a distributive lattice. A one-to-one correspondence is established between the set of all prime $\sigma $-filters of a distributive lattice and the set of all prime $\sigma $-filters of its quotient lattice with respect to a congruence.

Keywords:

prime filter, co-annihilator, $\mu$-filter, O-filter, $\sigma$-filter, $pm$-lattice

References:

  1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. XXV (Providence, 1967), USA.
  2. S. Burris and H.P. Sankappanavar, A Cource in Universal Algebra (Springer Verlag, 1981).
  3. W.H. Cornish, Normal lattices, J. Austral. Math. Soc. 14 (1972) 200–215.
    https://doi.org/10.1017/S1446788700010041
  4. W.H. Cornish, Annulets and $\alpha $-ideals in distributive lattices, J. Austral. Math. Soc. 15 (1973) 70–77.
    https://doi.org/10.1017/S1446788700012775
  5. Y.Y. Dong and X.L. Xin, $\alpha $-filters and prime $\alpha $-filter spaces in residuated lattices, Soft Comput. 23 (10) (2018) 3207–3216.
    https://doi.org/10.1007/s00500-018-3195-9
  6. O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962) 505–514.
    https://doi.org/10.1215/S0012-7094-62-02951-4
  7. Y.S. Pawar and N.K. Thakare, $pm$-lattices, Algebra Univ. 7 (1977) 259–263.
    https://doi.org/10.1007/BF02485435
  8. S. Rasouli, Generalized co-annihilators in residuated lattices An. Univ. Craiova Ser. Mat. Inform. 45 (2)(2018), 190–207.
    https://doi.org/10.52846/ami.v45i2.827
  9. M. Sambasiva Rao, Normal filters of distributive lattices, Bull. Section of Logic 41 (3) (2012) 131–143.
  10. M. Sambasiva Rao, $O$-filters and minimal prime filters of lattices, Southeast Asian Bull. Math. 39 (2015) 113–121.
  11. M. Sambasiva Rao, $\mu $-filters of distributive lattices, Southeast Asian Bull. Math. 40 (2016) 251–264.
  12. H.P. Sankappanavar, Heyting algebras with dual pseudo-complementation, Pacific J. Math. 117 (2) (1985) 405–415.
    https://doi.org/10.2140/pjm.1985.117.405
  13. T.P. Speed, Some remarks on a class of distributive lattices, J. Aust. Math. Soc. 9 (1969) 289–296.
    https://doi.org/10.1017/S1446788700007205
  14. M. Mandelker, Relative annihilators in lattices, Duke Math. J. 37 (1970) 377–386.
    https://doi.org/10.1215/S0012-7094-70-03748-8

Close