DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

M. Mandal

Manasi Mandal

Department of Mathematics, Jadavpur
University, Kolkata-700032, India

email: manasi_ju@yahoo.in

0000-0002-3927-4207

N. Tamang

Nita Tamang

Department of Mathematics
University of North Bengal, Siliguri-734013, India

email: nita_anee@yahoo.in

S. Das

Sampad Das

Department of Mathematics, Jadavpur
University, Kolkata-700032, India

email: jumathsampad@gmail.com

0000-0001-7602-1842

Title:

On 3-prime and quasi 3-primary ideals of ternary semirings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(1) (2024) 163-175

Received: 2021-12-31 , Revised: 2023-01-11 , Accepted: 2022-01-11 , Available online: 2024-03-25 , https://doi.org/10.7151/dmgaa.1434

Abstract:

The purpose of this paper is to introduce the concept of 3-prime ideal as a generalization of prime ideal. Further, we generalize the concepts of 3-prime ideal and primary ideal, namely as quasi 3-primary ideal in a commutative ternary semiring with zero. The relationship among prime ideal, 3-prime ideal, primary ideal, quasi primary and quasi 3-primary ideal are investigated. Various results and examples concerning 3-prime ideals and quasi 3-primary ideals are given. Analogous theorems to the primary avoidance theorem for quasi 3-primary ideals are also studied.

Keywords:

ternary semiring, regular ternary semiring, 3-prime ideals, quasi 3-primary ideals

References:

  1. C. Beddani and W. Messirdi, 2-Prime ideals and their applications, J. Algebra and Its Applications 15 (3) (2016) 1650051.
    https://doi.org/10.1142/S0219498816500511
  2. T.K. Dutta and S. Kar, A note on regular ternary semirings, Kyungpook Math. J. 46 (2006) 357–365.
  3. T.K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, New Jersey (2003) 343–355.
    https://doi.org/10.1142/9789812705808\_0027
  4. T.K. Dutta and S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Cal. Math. Soc. 97 (5) (2005) 445–454.
  5. T.K. Dutta and S. Kar, On semiprime ideals and irreducible ideals of ternary semirings Bull. Cal. Math. Soc. 97 (5) (2005) 467–476.
  6. T.K. Dutta and S. Kar, On ternary semifields, Discuss. Math. Gen. Alg. and Appl. 24 (2) (2004) 185–198.
    https://doi.org/10.7151/dmgaa.1084
  7. W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37–55.
  8. D.H. Lehmer, A Ternary Analogue of Abelian Group, Amer. J. Math. 59 (1932) 329–338.
    https://doi.org/10.2307/2370997
  9. S. Koc, U. Tekir and G. Ulucak, On strongly quasi primary ideals, Bull. Korean Math. Soc. 56 (3) (2019) 729–743.
    https://doi.org/10.4134/BKMS.b180522
  10. R. Nikandish, M.J. Nikmehr and A. Yassine, More on the 2-prime ideals of commutative rings, Bull. Korean Math. Soc. 57 (1) (2020) 117–126.
    https://doi.org/10.4134/BKMS.b190094
  11. G.S. Rao, D.M. Rao, P. Sivaprasad and M. Vasantha, Ideals in quotient ternary semiring, Int. J. Adv. Management, Techn. and Eng. Sci. 7 (12) (2017).
  12. P. Yiarayong, On weakly completely quasi primary and completely quasi primary ideals in ternary semirings, Commun. Korean Math. Soc. 31 (2016) 657–665.
    https://doi.org/10.4134/CKMS.c150164

Close