Article in volume
Authors:
Title:
Crypto-automorphism group of some quasigroups
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 44(1) (2024) 57-72
Received: 2022-01-18 , Revised: 2022-09-20 , Accepted: 2022-09-20 , Available online: 2023-04-17 , https://doi.org/10.7151/dmgaa.1433
Abstract:
In quasigroup and loop theory, a pseudo-automorphism (with single companion) is
known to generalize automorphism. In this work, the set of crypto-automorphisms
(with twin companion) of a quasigroup with right and left identity elements
were shown to form a group. For a quasigroup with right and left identity
elements, some results on autotopic characterizations of crypto-automorphisms
were established and used to deduce some subgroups of the crypto-automorphism
group of a middle Bol loop. The crypto-automorphism group and Bryant-Schneider
group (this has been used in the study of the isotopy-isomorphy of some
varieties of loops e.g. Bol loops, Moufang loops, Osborn loops) of a loop were
found to coincide.
Keywords:
quasigroup, loop, crypto-automorphism, Bryant-Schneider group
References:
- Adeniran, J. O. (2003). Some properties of the Bryant-Schneider groups of certain Bol loops. Proc. Jangjeon Math. Soc. 6, no. 1, 71–80.
- Adeniran, J. O; Akinleye, S. A and Alakoya, T. O. (2015). On the core and some isotopic characterisations of generalised Bol loops, J. of the Nigerian Asso. Mathematical Phy. 1, 99–104 https://doi.org/10.22199/issn.0717-6279-4581
- Adeniran, J. O., Jaiyé\d olá T. G. and Idowu, K. A. (2014). Holomorph of generalized Bol loops, Novi Sad Journal of Mathematics, 44, no. 1, 37–51.
- Adeniran, J. O., Jaiyé\d olá T. G. and Idowu, K. A. (2022), On some characterizations of generalized Bol loops. Proyecciones Journal of Mathematics, 41, no. 4, 805–823. https://doi.org/10.22199/issn.0717-6279-4581
- Belousov V.D. (1971) Algebraic nets and quasigroups. (Russian), Kishinev, "Shtiintsa", 166 pp.
- Belousov, V. D. (1967). Foundations of the theory of quasigroups and loops, (Russian) Izdat. ``Nauka'', Moscow 223pp.
- Belousov, V. D.; Sokolov, E. I. (1988). $N$-ary inverse quasigroups ($\textrm{I}$-quasigroups), (Russian) Mat. Issled. No. 102, Issled. Oper. i Kvazigrupp, 26–36, 118.
- Burris S. and Sankappanavar, H. P. (1981). A course in universal algebra. Graduate Texts in Mathematics, 78. Springer-Verlag, New York-Berlin. xvi+276 .
- Capodaglio Di Cocco R. (1993), On Isotopism and Pseudo-Automorphism of the loops, Bollettino U. M. I. 7, 199–205.
- Capodaglio Di Cocco R. (2003), Regular Permutation Sets and Loops, Bollettino U. M. I. 8, 617–628.
- Drapal, A. and Shcherbacov, V. (2012), Identities and the group of isostrophisms, Comment. Math. Univ. Carolin. 53(3), 347–374.
- Foguel, T; Kinyon, M .K and Phillips, J. D. (2006). On twisted subgroups and Bol loops of odd order. Rocky Mountain J. Math. 36, no. 1, 183–212. https://www.jstor.org/stable/44239103
- Grecu, I. (2014). On multiplication groups of isostrophic quasigroups, Proceedings of the Third Conference of Mathematical Society of Moldova IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova, 78-81. http://dspace.usm.md:8080/xmlui/handle/123456789/1292
- Grecu, I. and Syrbu, P. (2012), On Some Isostrophy Invariants of Bol Loops, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 5(54), 145–154.
- Grecu, I. and Syrbu, P. (2014), Commutants of middle Bol loops, Quasigroups and Related Systems, 22, 81–88.
- Greer, M. and Kinyon, M. (2012), Pseudoautomorphisms of Bruck loops and their generalizations, Comment. Math. Univ. Carolin. 53(3), 383-–389.
- Gvaramiya A. (1971). On a class of loops (Russian), Uch. Zapiski MAPL. 375, 25-34.
- Jaiyé\d olá, T. G; David, S. P and Oyebo, Y. T. (2015). New algebraic properties of middle Bol loops. ROMAI J. 11, no. 2, 161–183
- Jaiyé\d olá, T. G.; David, S. P and Oyebola, O. O. (2021). New algebraic properties of middle Bol loops II. Proyecciones Journal of Mathematics 40, no. 1, 85–106. http://dx.doi.org/10.22199/issn.0717-6279-2021-01-0006
- Jaiyé\d olá, T. G; David, S. P; Ilojide. E; Oyebo, Y. T. (2017). Holomorphic structure of middle Bol loops. Khayyam J. Math. 3, no. 2, 172–184. https://doi.org/10.22034/kjm.2017.51111
- Robinson, D. A. (1980). The Bryant-Schneider group of a loop. Ann. Soc. Sci. Bruxelles Sér. I 94 , no. 2-3, 69–81 (1981).
- Jaiyé\d olá, T. G. (2008). On Smarandache Bryant Schneider group of A Smarandache loop, International Journal of Mathematical Combinatorics, 2, 51–63. http://doi.org/10.5281/zenodo.820935
- Jaiyé\d olá, T. G. (2009). A study of new concepts in smarandache quasigroups and loop, ProQuest Information and Learning(ILQ), Ann Arbor, 127pp. https://doi.org/10.5281/zenodo.8913
- Jaiyé\d olá, T. G. (2009); Basic Properties of Second Smarandache Bol Loops, International Journal of Mathematical Combinatorics, 2, 11–20. http://doi.org/10.5281/zenodo.32303
- Jaiyé\d olá, T. G. (2011); Smarandache Isotopy Of Second Smarandache Bol Loops, Scientia Magna Journal, 7, no. 1., 82–93. http://doi.org/10.5281/zenodo.234114
- Jaiyé\d olá, T. G., Adéníran, J. O. and Sòlárìn, A. R. T. (2011), Some necessary conditions for the existence of a finite Osborn loop with trivial nucleus, Algebras, Groups and Geometries, 28, no. 4, 363–380.
- Jaiyé\d olá, T. G., Adéníran, J. O. and Agboola, A. A. A. (2013); On the Second Bryant Schneider Group of Universal Osborn loops, Societatea Română de Matematică Aplicată si Industrială Journal (ROMAI J.), 9, no. 1, 37–50.
- Jaiyé\d olá, T. G. and Popoola, B. A. (2015). Holomorph of generalized Bol loops II, Discussiones Mathematicae-General Algebra and Applications, 35, no. 1, 59-–78. doi:10.7151/dmgaa.1234.
- Jaiyé\d olá T. G., Osoba, B. and Oyem, A., Isostrophy Bryant-Schneider Group-Invariant of Bol loops, pre-print.
- Kuznetsov, E. (2003), Gyrogroups and left gyrogroups as transversals of a special kind, Algebraic and discrete Mathematics 3, 54–81.
- Shcherbacov, V. A. (2011). A-nuclei and A-centers of quasigroup, Institute of mathematics and computer Science Academiy of Science of Moldova Academiei str. 5, Chisinau, MD -2028, Moldova
- Osoba, B and Oyebo, Y. T. (2018). On Multiplication Groups of Middle Bol Loop Related to Left Bol Loop, Int. J. Math. and Appl., 6, no. 4, 149–155.
- Osoba. B and Oyebo. Y. T (2018). On Relationship of Multiplication Groups and Isostrophic quasigroups, International Journal of Mathematics Trends and Technology (IJMTT), 58, no. 2, 80–84. DOI:10.14445/22315373/IJMTT-V58P511
- Osoba, B. and Jaiyé\d olá T. G. Algebraic Connections between Right and Middle Bol loops and their Cores, Quasigroups and Related Systems, 30, 149-160, 2022.
- Oyebo, Y. T. and Osoba, B. More results on the algebraic properties of middle Bol loops. Journal of the Nigerian mathematical society, accepted for publication.
- Osoba, B. Smarandache Nuclei of Second Smarandache Bol Loops, Scientia Magna Journal, accepted for publication.
- Pflugfelder, Hala O. (1990). Quasigroups and loops: introduction . Sigma Series in Pure Mathematics, 7. Heldermann Verlag, Berlin. viii+147
- Shcherbacov, V. A. (2017), Elements of quasigroup theory and applications. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL.
- Syrbu, P. (1994), Loops with universal elasticity, Quasigroups Related Systems 1, 57–65.
- Syrbu, P. (1996), On loops with universal elasticity, Quasigroups Related Systems 3, 41–54.
- Syrbu, P. (2010), On middle Bol loops, ROMAI J. 6,2, 229–236.
- Syrbu, P. and Grecu, I. (2013). On some groups related to middle Bol loops, Revist$\check{a}$ Ştiinţific$\check{a}$ a Universit$\check{a}$ţii de Stat din Moldova, 7(67), 10–18.
- Vanliurova, A. (2005). Cores of Bol loops and symmetric groupoids. Bul. Acad. Lztiinle Repub. Mold. Mat, 49, no. 3, 153–164.
Close