DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

Y.T. Oyebo

Yakub Tunde Oyebo

Department of Mathematics
Lagos State University Ojo
Lagos State, 102101 Nigeria

email: oyeboyt@yahoo.com

B. Osoba

Benard Osoba

Bell University of Technology, Ota

email: benardomth@gmail.com

0000-0003-0840-8046

T.G. Jaiyeola

Temitópe Gbólahan Jaiyeola

Department of Mathematics
Obafemi Awolowo University
Ile Ife 220005, Nigeria

email: jaiyeolatemitope@yahoo.com

Title:

Crypto-automorphism group of some quasigroups

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 44(1) (2024) 57-72

Received: 2022-01-18 , Revised: 2022-09-20 , Accepted: 2022-09-20 , Available online: 2023-04-17 , https://doi.org/10.7151/dmgaa.1433

Abstract:

In quasigroup and loop theory, a pseudo-automorphism (with single companion) is known to generalize automorphism. In this work, the set of crypto-automorphisms (with twin companion) of a quasigroup with right and left identity elements were shown to form a group. For a quasigroup with right and left identity elements, some results on autotopic characterizations of crypto-automorphisms were established and used to deduce some subgroups of the crypto-automorphism group of a middle Bol loop. The crypto-automorphism group and Bryant-Schneider group (this has been used in the study of the isotopy-isomorphy of some varieties of loops e.g. Bol loops, Moufang loops, Osborn loops) of a loop were found to coincide.

Keywords:

quasigroup, loop, crypto-automorphism, Bryant-Schneider group

References:

  1. Adeniran, J. O. (2003). Some properties of the Bryant-Schneider groups of certain Bol loops. Proc. Jangjeon Math. Soc. 6, no. 1, 71–80.
  2. Adeniran, J. O; Akinleye, S. A and Alakoya, T. O. (2015). On the core and some isotopic characterisations of generalised Bol loops, J. of the Nigerian Asso. Mathematical Phy. 1, 99–104 https://doi.org/10.22199/issn.0717-6279-4581
  3. Adeniran, J. O., Jaiyé\d olá T. G. and Idowu, K. A. (2014). Holomorph of generalized Bol loops, Novi Sad Journal of Mathematics, 44, no. 1, 37–51.
  4. Adeniran, J. O., Jaiyé\d olá T. G. and Idowu, K. A. (2022), On some characterizations of generalized Bol loops. Proyecciones Journal of Mathematics, 41, no. 4, 805–823. https://doi.org/10.22199/issn.0717-6279-4581
  5. Belousov V.D. (1971) Algebraic nets and quasigroups. (Russian), Kishinev, "Shtiintsa", 166 pp.
  6. Belousov, V. D. (1967). Foundations of the theory of quasigroups and loops, (Russian) Izdat. ``Nauka'', Moscow 223pp.
  7. Belousov, V. D.; Sokolov, E. I. (1988). $N$-ary inverse quasigroups ($\textrm{I}$-quasigroups), (Russian) Mat. Issled. No. 102, Issled. Oper. i Kvazigrupp, 26–36, 118.
  8. Burris S. and Sankappanavar, H. P. (1981). A course in universal algebra. Graduate Texts in Mathematics, 78. Springer-Verlag, New York-Berlin. xvi+276 .
  9. Capodaglio Di Cocco R. (1993), On Isotopism and Pseudo-Automorphism of the loops, Bollettino U. M. I. 7, 199–205.
  10. Capodaglio Di Cocco R. (2003), Regular Permutation Sets and Loops, Bollettino U. M. I. 8, 617–628.
  11. Drapal, A. and Shcherbacov, V. (2012), Identities and the group of isostrophisms, Comment. Math. Univ. Carolin. 53(3), 347–374.
  12. Foguel, T; Kinyon, M .K and Phillips, J. D. (2006). On twisted subgroups and Bol loops of odd order. Rocky Mountain J. Math. 36, no. 1, 183–212. https://www.jstor.org/stable/44239103
  13. Grecu, I. (2014). On multiplication groups of isostrophic quasigroups, Proceedings of the Third Conference of Mathematical Society of Moldova IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova, 78-81. http://dspace.usm.md:8080/xmlui/handle/123456789/1292
  14. Grecu, I. and Syrbu, P. (2012), On Some Isostrophy Invariants of Bol Loops, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 5(54), 145–154.
  15. Grecu, I. and Syrbu, P. (2014), Commutants of middle Bol loops, Quasigroups and Related Systems, 22, 81–88.
  16. Greer, M. and Kinyon, M. (2012), Pseudoautomorphisms of Bruck loops and their generalizations, Comment. Math. Univ. Carolin. 53(3), 383-–389.
  17. Gvaramiya A. (1971). On a class of loops (Russian), Uch. Zapiski MAPL. 375, 25-34.
  18. Jaiyé\d olá, T. G; David, S. P and Oyebo, Y. T. (2015). New algebraic properties of middle Bol loops. ROMAI J. 11, no. 2, 161–183
  19. Jaiyé\d olá, T. G.; David, S. P and Oyebola, O. O. (2021). New algebraic properties of middle Bol loops II. Proyecciones Journal of Mathematics 40, no. 1, 85–106. http://dx.doi.org/10.22199/issn.0717-6279-2021-01-0006
  20. Jaiyé\d olá, T. G; David, S. P; Ilojide. E; Oyebo, Y. T. (2017). Holomorphic structure of middle Bol loops. Khayyam J. Math. 3, no. 2, 172–184. https://doi.org/10.22034/kjm.2017.51111
  21. Robinson, D. A. (1980). The Bryant-Schneider group of a loop. Ann. Soc. Sci. Bruxelles Sér. I 94 , no. 2-3, 69–81 (1981).
  22. Jaiyé\d olá, T. G. (2008). On Smarandache Bryant Schneider group of A Smarandache loop, International Journal of Mathematical Combinatorics, 2, 51–63. http://doi.org/10.5281/zenodo.820935
  23. Jaiyé\d olá, T. G. (2009). A study of new concepts in smarandache quasigroups and loop, ProQuest Information and Learning(ILQ), Ann Arbor, 127pp. https://doi.org/10.5281/zenodo.8913
  24. Jaiyé\d olá, T. G. (2009); Basic Properties of Second Smarandache Bol Loops, International Journal of Mathematical Combinatorics, 2, 11–20. http://doi.org/10.5281/zenodo.32303
  25. Jaiyé\d olá, T. G. (2011); Smarandache Isotopy Of Second Smarandache Bol Loops, Scientia Magna Journal, 7, no. 1., 82–93. http://doi.org/10.5281/zenodo.234114
  26. Jaiyé\d olá, T. G., Adéníran, J. O. and Sòlárìn, A. R. T. (2011), Some necessary conditions for the existence of a finite Osborn loop with trivial nucleus, Algebras, Groups and Geometries, 28, no. 4, 363–380.
  27. Jaiyé\d olá, T. G., Adéníran, J. O. and Agboola, A. A. A. (2013); On the Second Bryant Schneider Group of Universal Osborn loops, Societatea Română de Matematică Aplicată si Industrială Journal (ROMAI J.), 9, no. 1, 37–50.
  28. Jaiyé\d olá, T. G. and Popoola, B. A. (2015). Holomorph of generalized Bol loops II, Discussiones Mathematicae-General Algebra and Applications, 35, no. 1, 59-–78. doi:10.7151/dmgaa.1234.
  29. Jaiyé\d olá T. G., Osoba, B. and Oyem, A., Isostrophy Bryant-Schneider Group-Invariant of Bol loops, pre-print.
  30. Kuznetsov, E. (2003), Gyrogroups and left gyrogroups as transversals of a special kind, Algebraic and discrete Mathematics 3, 54–81.
  31. Shcherbacov, V. A. (2011). A-nuclei and A-centers of quasigroup, Institute of mathematics and computer Science Academiy of Science of Moldova Academiei str. 5, Chisinau, MD -2028, Moldova
  32. Osoba, B and Oyebo, Y. T. (2018). On Multiplication Groups of Middle Bol Loop Related to Left Bol Loop, Int. J. Math. and Appl., 6, no. 4, 149–155.
  33. Osoba. B and Oyebo. Y. T (2018). On Relationship of Multiplication Groups and Isostrophic quasigroups, International Journal of Mathematics Trends and Technology (IJMTT), 58, no. 2, 80–84. DOI:10.14445/22315373/IJMTT-V58P511
  34. Osoba, B. and Jaiyé\d olá T. G. Algebraic Connections between Right and Middle Bol loops and their Cores, Quasigroups and Related Systems, 30, 149-160, 2022.
  35. Oyebo, Y. T. and Osoba, B. More results on the algebraic properties of middle Bol loops. Journal of the Nigerian mathematical society, accepted for publication.
  36. Osoba, B. Smarandache Nuclei of Second Smarandache Bol Loops, Scientia Magna Journal, accepted for publication.
  37. Pflugfelder, Hala O. (1990). Quasigroups and loops: introduction . Sigma Series in Pure Mathematics, 7. Heldermann Verlag, Berlin. viii+147
  38. Shcherbacov, V. A. (2017), Elements of quasigroup theory and applications. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL.
  39. Syrbu, P. (1994), Loops with universal elasticity, Quasigroups Related Systems 1, 57–65.
  40. Syrbu, P. (1996), On loops with universal elasticity, Quasigroups Related Systems 3, 41–54.
  41. Syrbu, P. (2010), On middle Bol loops, ROMAI J. 6,2, 229–236.
  42. Syrbu, P. and Grecu, I. (2013). On some groups related to middle Bol loops, Revist$\check{a}$ Ştiinţific$\check{a}$ a Universit$\check{a}$ţii de Stat din Moldova, 7(67), 10–18.
  43. Vanliurova, A. (2005). Cores of Bol loops and symmetric groupoids. Bul. Acad. Lztiinle Repub. Mold. Mat, 49, no. 3, 153–164.

Close