Article in volume
Authors:
Title:
On the structure space of prime congruences on semirings
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 389-401
Received: 2022-03-01 , Revised: 2022-08-16 , Accepted: 2022-08-16 , Available online: 2023-04-11 , https://doi.org/10.7151/dmgaa.1429
Abstract:
In the present paper, we study some of the topological properties of the space
of prime congruences on a semiring endowed with the hull kernel topology.
Keywords:
semiring, congruence, prime congruence, hull kernel topology, structure space
References:
- S.K. Acharyya, K.C. Chattopadhyay and G.G. Ray, Hemirings, congruences and the Stone–$\check{C}$ech compactification, Bull. Belg. Math. Soc. Simon Stevin 67 (1993) 21–35.
- M.R. Adhikari and M.K. Das, Structure spaces of semirings, Bull. Cal. Math. Soc. 86 (1994) 313–317.
- J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, 1999).
https://doi.org/10.1007/978-94-015-9333-5 - S. Han, $k$-Congruences on semirings, (2016) arXiv: 1607.00099v1[math.RA].
https://doi.org/10.48550/arXiv.1607.00099 - S. Han, $k$-Congruences and the Zariski topology in semirings, Hacettepe J. Math. Stat. 50 (3) (2021) 699–709.
https://doi.org/10.15672/hujms.614688 - K. Is$\acute{e}$ki, Notes on topological spaces, V. On structure spaces of semiring, Proc. Japan Acad. 32 (1956) 426–429.
https://doi.org/10.3792/pja/1195525309 - K. Is$\acute{e}$ki and Y. Miyanaga, Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad. 32 (1956) 325–328.
https://doi.org/10.3792/pja/1195525375 - N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc. Nat. Acad. Sci. U.S.A 31 (1945) 333–338.
https://doi.org/10.1073/pnas.31.10.333 - R.D. Jagatap and Y.S. Pawar, Structure space of prime ideals of $Γ$-semirings, Palestine J. Math. 5 (2016) 166–170.
- D. Joo and K. Mincheva, Prime congruences of idempotent semirings and a Nullstellensatz for tropical polynomials, Selecta Mathematica 24 (3) (2017) arXiv:1408.3817.
https://doi.org/10.1007/s00029-017-0322-x - P. Lescot, Absolute Algebra III-The saturated spectrum, Journal of Pure and Applied Algebra 216 (7) (2012) 1004–1015.
https://doi.org/10.48550/arXiv.1310.8399 - K. Mincheva, Semiring Congruences and Tropical Geometry, Ph.D. Thesis (Johns Hopkins University, 2016).
- M.K. Sen and M.R. Adhikari, On maximal $k$-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703.
https://doi.org/10.1090/S0002-9939-1993-1132423-6 - M.K. Sen and S. Bandyopadhyay, Structure Space of a Semi Algebra over a Hemiring, Kyungpook Math. J. 33 (1) (1993) 25–36.
- F.G. Simmons, Introduction to Topology and Modern Analysis (Tata McGraw-Hill Company Limited, 2004).
- H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914–920.
https://doi.org/10.1090/s0002-9904-1934-06003-8
Close