DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

S. Basu

Soumi Basu

Jadavpur University

email: basu.soumi2018@gmail.com

S. Mukherjee (Goswami)

Sarbani Mukherjee (Goswami)

Lady Brabourne College
Department of Mathematics
Kolkata, West Bengal, India

email: sarbani7_-goswami@yahoo.co.in

K. Chakraborty

Kamalika Chakraborty

Jadavpur University
Department of Mathematics, Kolkata, West Bengal, India

email: kchakrabortyjumath@gmail.com

Title:

On the structure space of prime congruences on semirings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 389-401

Received: 2022-03-01 , Revised: 2022-08-16 , Accepted: 2022-08-16 , Available online: 2023-04-11 , https://doi.org/10.7151/dmgaa.1429

Abstract:

In the present paper, we study some of the topological properties of the space of prime congruences on a semiring endowed with the hull kernel topology.

Keywords:

semiring, congruence, prime congruence, hull kernel topology, structure space

References:

  1. S.K. Acharyya, K.C. Chattopadhyay and G.G. Ray, Hemirings, congruences and the Stone–$\check{C}$ech compactification, Bull. Belg. Math. Soc. Simon Stevin 67 (1993) 21–35.
  2. M.R. Adhikari and M.K. Das, Structure spaces of semirings, Bull. Cal. Math. Soc. 86 (1994) 313–317.
  3. J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, 1999).
    https://doi.org/10.1007/978-94-015-9333-5
  4. S. Han, $k$-Congruences on semirings, (2016) arXiv: 1607.00099v1[math.RA].
    https://doi.org/10.48550/arXiv.1607.00099
  5. S. Han, $k$-Congruences and the Zariski topology in semirings, Hacettepe J. Math. Stat. 50 (3) (2021) 699–709.
    https://doi.org/10.15672/hujms.614688
  6. K. Is$\acute{e}$ki, Notes on topological spaces, V. On structure spaces of semiring, Proc. Japan Acad. 32 (1956) 426–429.
    https://doi.org/10.3792/pja/1195525309
  7. K. Is$\acute{e}$ki and Y. Miyanaga, Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad. 32 (1956) 325–328.
    https://doi.org/10.3792/pja/1195525375
  8. N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc. Nat. Acad. Sci. U.S.A 31 (1945) 333–338.
    https://doi.org/10.1073/pnas.31.10.333
  9. R.D. Jagatap and Y.S. Pawar, Structure space of prime ideals of $Γ$-semirings, Palestine J. Math. 5 (2016) 166–170.
  10. D. Joo and K. Mincheva, Prime congruences of idempotent semirings and a Nullstellensatz for tropical polynomials, Selecta Mathematica 24 (3) (2017) arXiv:1408.3817.
    https://doi.org/10.1007/s00029-017-0322-x
  11. P. Lescot, Absolute Algebra III-The saturated spectrum, Journal of Pure and Applied Algebra 216 (7) (2012) 1004–1015.
    https://doi.org/10.48550/arXiv.1310.8399
  12. K. Mincheva, Semiring Congruences and Tropical Geometry, Ph.D. Thesis (Johns Hopkins University, 2016).
  13. M.K. Sen and M.R. Adhikari, On maximal $k$-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703.
    https://doi.org/10.1090/S0002-9939-1993-1132423-6
  14. M.K. Sen and S. Bandyopadhyay, Structure Space of a Semi Algebra over a Hemiring, Kyungpook Math. J. 33 (1) (1993) 25–36.
  15. F.G. Simmons, Introduction to Topology and Modern Analysis (Tata McGraw-Hill Company Limited, 2004).
  16. H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914–920.
    https://doi.org/10.1090/s0002-9904-1934-06003-8

Close