DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

J.P. Mavoungou

Jean-Paul Mavoungou

University of Yaoundé 1, Faculty of Science
Department of Mathematics, P.O. Box 812 Yaoundé, Cameroon

email: jpmavoungou@yahoo.fr

Title:

Distributive categories of coalgebras

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 363-373

Received: 2021-08-14 , Revised: 2022-06-29 , Accepted: 2022-06-29 , Available online: 2023-01-13 , https://doi.org/10.7151/dmgaa.1426

Abstract:

We prove that the category of coalgebras for an endo-functor $F$ is distributive or extensive, provided that $F$ preserves pullbacks along monomorphisms and the underlying category is distributive or extensive.

Keywords:

coalgebra, coproduct, distributive category, pullback

References:

  1. J. Adámek, Introduction to coalgebra, Theory and Application of Categories, 14 (2005) 157–199.
  2. J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories (Wiley-Interscience, 1990).
  3. A. Carboni, S. Lack and R.F. C Walters, Introduction to extensive and distributive categories, J. Pure Appl. Alg. 84 (2) (1993) 145–158.
    https://doi.org/10.1016/0022-4049(93)90035-R
  4. J.R.B. Cockett, Introduction to distributive categories, Math. Structure Comput. Sci. 3 (3) (1993) 277–307.
    https://doi.org/10.1017/S0960129500000232
  5. M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci. 114 (2) (1993) 299–315.
    https://doi.org/10.1016/0304-3975(93)90076-6
  6. H.P. Gumm and T. Schröder, Coalgebraic structure from weak limit preserving functors, Elect. Notes Theoret. Comput. Sci. 33 (2000) 113–133.
    https://doi.org/10.1016/S1571-0661(05)80346-9
  7. H.P. Gumm, J. Hughes and T. Schröder, Distributivity of classes of coalgebras, Theoret. Comput. Sci. 308 (2003) 131–143.
    https://doi.org/10.1016/S0304-3975(02)00582-0
  8. H.P. Gumm and T. Schröder, Products of coalgebras, Algebra Univ. 46 (2001) 163–185.
    https://doi.org/10.1007/PL00000334
  9. P. Johnstone, J. Power, T. Tsujishita, H. Watanabe and J. Worrell, On the structure of categories of coalgebras, Theoret. Comput. Sci. 260 (2001) 87–117.
    https://doi.org/10.1016/S0304-3975(00)00124-9
  10. S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5 (Springer-Verlag, 1971).
    https://doi.org/10.1007/978-1-4612-9839-7
  11. J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3–80.
    https://doi.org/10.1016/S0304-3975(00)00056-6
  12. H. Schubert, Categories (Springer-Verlag, Berlin, Heidelberg and New York, 1972).

Close