Article in volume
Authors:
Title:
On some subgroup lattices of dihedral, alternating and symmetric groups
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 309-326
Received: 2021-11-10 , Revised: 2022-05-21 , Accepted: 2022-05-21 , Available online: 2023-01-13 , https://doi.org/10.7151/dmgaa.1425
Abstract:
In this paper, the collections of all pronormal subgroups of $D_n$ and Hall
subgroups for groups $A_n$, $S_n$ and $D_n$ are studied. It is proved that the
collection of all pronormal subgroups of $D_n$ is a sublattice of $L(D_n)$.
It is also proved that the collection of all Hall subgroups of $D_n$, $A_n$ and
$S_n$ do not form sublattices of respective $L(D_n)$, $L(A_n)$ and $L(S_n)$.
Keywords:
group, pronormal subgroup, Hall subgroup, lattice of subgroups, strong lattice
References:
- G. Birkhoff, Lattice Theory, 3rd Ed. 25 (Amer. Math. Soc. Providence, R.I. 1967).
- S.K. Chebolu and K. Lockridge, Fuchs' problem for dihedral groups, J. Pure Appl. Alg. 221 (4) (2017) 971–982.
https://doi.org/10.1016/j.jpaa.2016.08.015 - K. Conrad, Consequences of the Sylow Theorems. https://kconrad.math.uconn.edu/blurbs/grouptheory/sylowapp.pdf
- K. Conrad, Dihedral Groups II. https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
- U. Faigle, Geometries on partially ordered sets, J. Combin. Theory Ser. B 28 (1980) 26–51.
https://doi.org/10.1016/0095-8956(80)90054-4 - G. Grätzer, General Lattice Theory (Academic press, New York, 1978)
- P. Hall, Theorems like Sylow’s, Proc. London Math. Soc. 22 (6) (1956) 286–304.
https://doi.org/10.1112/plms/s3-6.2.286 - I.S. Luthar and I.B.S. Passi, Algebra Volume 1: Groups (Narosa Publishing House Pvt. Ltd., New Delhi, 1999).
- A. Mann, A criterion for pronormality, J. London Math. Soc. 44 (1969) 175–176.
https://doi.org/10.1112/jlms/s1-44.1.175 - P.P. Pálfy, Groups and lattices, London Math. Soc. Lecture Note Ser. 305 (2003) 428–454.
- T.A. Peng, Pronormality in finite groups, J. London Math. Soc. 3 (1971) 301–306.
https://doi.org/10.1112/jlms/s2-3.2.301 - G. Richter and M. Stern, Strongness in (semimodular) lattices of finite length, Wiss. Z. Univ. Halle 33 (1984) 73–77.
- J.S. Rose, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. 17 (3) (1969) 447–469.
https://doi.org/10.1112/plms/s3-17.3.447 - R. Schmidt, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics 14 (de Gruyter, Berlin, 1994).
- R. Soloman, A brief history of the classification of the finite simple groups, Bull. Amer. Math. Soc. 38 (3) (2001) 315–352.
https://doi.org/10.1090/S0273-0979-01-00909-0 - M. Stern, Semimodular Lattices (Cambridge University Press, 1999).
- R. Sulaiman, Subgroups Lattice of symmetric group $S_4$, Int. J. Algebra 6 (1) (2012) 29–35.
- M. Suzuki, Structure of Groups and Structures of its Lattice of Subgroups (Springer Verlag, Berlin, 1956).
- E.P. Vdovin and D.O. Revin, Pronormality and strong pronormality of subgroups, Algebra Log. 52 (2013) 15–23.
https://doi.org/10.1007/s10469-013-9215-z - E.P. Vdovin and D.O. Revin, On the pronormality of Hall subgroups, Sib. Math. J. 54 (1) (2013) 22–28.
https://doi.org/10.1134/S0037446613010035 - P.M. Whitman, Groups with a cyclic group as a lattice homomorph, Ann. Math. 49 (2) (1948) 347–351.
https://doi.org/10.2307/1969283
Close