DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

V. Kharat

Vilas Kharat

Department of Mathematics
S.P. Pune University, Pune 411007 India

email: vilaskharat@unipune.ac.in

S. Mitkari

Shrawani Pravin Mitkari

Department of Mathematics Savitribai Phule Pune University

email: shrawaniin@gmail.com

S. Ballal

Sachin Ballal

Department of Mathematics
S.P. Pune University, Pune 411007 India

email: sachinballal@uohyd.ac.in

Title:

On some subgroup lattices of dihedral, alternating and symmetric groups

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 309-326

Received: 2021-11-10 , Revised: 2022-05-21 , Accepted: 2022-05-21 , Available online: 2023-01-13 , https://doi.org/10.7151/dmgaa.1425

Abstract:

In this paper, the collections of all pronormal subgroups of $D_n$ and Hall subgroups for groups $A_n$, $S_n$ and $D_n$ are studied. It is proved that the collection of all pronormal subgroups of $D_n$ is a sublattice of $L(D_n)$. It is also proved that the collection of all Hall subgroups of $D_n$, $A_n$ and $S_n$ do not form sublattices of respective $L(D_n)$, $L(A_n)$ and $L(S_n)$.

Keywords:

group, pronormal subgroup, Hall subgroup, lattice of subgroups, strong lattice

References:

  1. G. Birkhoff, Lattice Theory, 3rd Ed. 25 (Amer. Math. Soc. Providence, R.I. 1967).
  2. S.K. Chebolu and K. Lockridge, Fuchs' problem for dihedral groups, J. Pure Appl. Alg. 221 (4) (2017) 971–982.
    https://doi.org/10.1016/j.jpaa.2016.08.015
  3. K. Conrad, Consequences of the Sylow Theorems. https://kconrad.math.uconn.edu/blurbs/grouptheory/sylowapp.pdf
  4. K. Conrad, Dihedral Groups II. https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
  5. U. Faigle, Geometries on partially ordered sets, J. Combin. Theory Ser. B 28 (1980) 26–51.
    https://doi.org/10.1016/0095-8956(80)90054-4
  6. G. Grätzer, General Lattice Theory (Academic press, New York, 1978)
  7. P. Hall, Theorems like Sylow’s, Proc. London Math. Soc. 22 (6) (1956) 286–304.
    https://doi.org/10.1112/plms/s3-6.2.286
  8. I.S. Luthar and I.B.S. Passi, Algebra Volume 1: Groups (Narosa Publishing House Pvt. Ltd., New Delhi, 1999).
  9. A. Mann, A criterion for pronormality, J. London Math. Soc. 44 (1969) 175–176.
    https://doi.org/10.1112/jlms/s1-44.1.175
  10. P.P. Pálfy, Groups and lattices, London Math. Soc. Lecture Note Ser. 305 (2003) 428–454.
  11. T.A. Peng, Pronormality in finite groups, J. London Math. Soc. 3 (1971) 301–306.
    https://doi.org/10.1112/jlms/s2-3.2.301
  12. G. Richter and M. Stern, Strongness in (semimodular) lattices of finite length, Wiss. Z. Univ. Halle 33 (1984) 73–77.
  13. J.S. Rose, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. 17 (3) (1969) 447–469.
    https://doi.org/10.1112/plms/s3-17.3.447
  14. R. Schmidt, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics 14 (de Gruyter, Berlin, 1994).
  15. R. Soloman, A brief history of the classification of the finite simple groups, Bull. Amer. Math. Soc. 38 (3) (2001) 315–352.
    https://doi.org/10.1090/S0273-0979-01-00909-0
  16. M. Stern, Semimodular Lattices (Cambridge University Press, 1999).
  17. R. Sulaiman, Subgroups Lattice of symmetric group $S_4$, Int. J. Algebra 6 (1) (2012) 29–35.
  18. M. Suzuki, Structure of Groups and Structures of its Lattice of Subgroups (Springer Verlag, Berlin, 1956).
  19. E.P. Vdovin and D.O. Revin, Pronormality and strong pronormality of subgroups, Algebra Log. 52 (2013) 15–23.
    https://doi.org/10.1007/s10469-013-9215-z
  20. E.P. Vdovin and D.O. Revin, On the pronormality of Hall subgroups, Sib. Math. J. 54 (1) (2013) 22–28.
    https://doi.org/10.1134/S0037446613010035
  21. P.M. Whitman, Groups with a cyclic group as a lattice homomorph, Ann. Math. 49 (2) (1948) 347–351.
    https://doi.org/10.2307/1969283

Close