DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

Y.L. Tenkeu Jeufack

Y.L. Tenkeu Jeufack

Department of Mathematics
Ecole Normale Supérieure
University of Yaoundé-1
P.O. Box 47 Yaoundé Cameroon

email: ytenkeu2018@gmail.com

J. Djoumessi

Joseph Djoumessi

Department of Mathematics
Ecole Normale Supérieure
University of Yaoundé-1
P.O. Box 47 Yaoundé Cameroon

email: joseph.djoumessi@yahoo.fr

E.R. Temgoua Alomo

Etienne R. Temgoua Alomo

Department of Mathematics
École Normale Supérieure de Yaoundé, University of Yaoundé 1
P.O. Box 47, Yaoundé, Cameroon

email: retemgoua@yahoo.fr

Title:

Binary relations and submaximal clones determined by central relation

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 263-300

Received: 2021-10-07 , Revised: 2022-04-13 , Accepted: 2022-04-13 , Available online: 2023-01-13 , https://doi.org/10.7151/dmgaa.1423

Abstract:

Let $\rho$ be an $h$-ary central relation ($h\geq 2$) and $\sigma$ a binary relation on a finite set $A$ such that $\sigma\neq\rho$. It is known from Rosenberg's classification theorem (1965) that the clone $\textrm{ Pol} \rho$ which consists of all operations on $A$ that preserve $\rho$ is a maximal clone on $A$. In this paper, we find all binary relations $\sigma$ such that the clone $\textrm{Pol} \{\rho, \sigma\}$ is a maximal subclone of $\textrm{Pol} \rho$, where $\rho$ is a fixed central relation.

Keywords:

central relations, meet-reducible, meet-irreducible, submaximal, clones

References:

  1. Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese remainder theorem for algebraic systems. Math.Z.143, 165-174 (1975).
  2. Diekouam, L., Tenkeu, J.Y.L., Temgoua, A.E.R., Tonga, M.: Meet-reducible submaximal clones determined by nontrivial equivalence relations, Journal of Algebra, Number theory; advances and Applications. Vol 17, $N_{0}$ 1,29-93, (2017). DOI: http://dx.doi.org/jantaa$_{-}$7100121803
  3. Lau, D.: Submaximale Klassen von $P_{3}$. J. Inf. Process. Cybern. EIK 18, 4/5, 227-243 (1982).
  4. Lau, D.: Function Algebras on finite sets. A basic course on many-valued logic and clone theory. Springer-Verlag, New York, Heidelberg, Berlin, (2006).
  5. Post, E.L.: Introduction to a general theory of elementary propositions. Amer. J. Math. 43, 163-185 (1921).
  6. Post, E.L.: The two-valued iterative systems of mathematical logic. Ann. Math. Studies 5, Princeton University Press (1941).
  7. Rosenberg, I.G.: La structure des fonctions de plusieurs variables sur un ensemble fini. C. R. Acad. Sci. Paris, Ser.A–B 260, 3817-3819 (1965).
  8. Rosenberg, I.G., Szendrei,Á.: Submaximal clones with a prime order automorphism. Acta Sci. Math. 49, 29-48 (1985).
  9. P$\ddot{o}$schel, R., Kalu$\breve{z}$nin, L.A.: Funktionen-und Relationenalgebren. VEB Deutscher Verlag der Wissenschaften. Berlin, (1979).
  10. Temgoua, E.R.A., Rosenberg, I.G.: Binary central relations and submaximal clones determined by nontrivial equivalence relations. Algebra universalis 67, 299-311 (2012).DOI 10.1007/s00012-012-0183-2
  11. Temgoua, A.E.R.: Meet-irreducible submaximal clones determined by nontrivial equivalence relations. Algebra universalis 70, 175-196 (2013).DOI 10.1007/s00012-013-0244-1
  12. Jeufack, Y.L.T., Diekouam, L., Temgoua, A.E.R.: Meet-reducible submaximal clones determined by two central relations.Asian-European Journal of Mathematics, Vol.12, $N_{0}.1$,(26pages), (2018). DOI: 10.1142/1793557119500645
  13. Szendrei, Á.: Clones in universal Algebra. Séminaire de mathématiques supérieures,Vol. 99. Les presses de l'université de Montréal (1986).

Close