DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

A.Z. Ansari

Abu Zaid Ansari

Department of Mathematics
Faculty of Science Islamic University of Madinah, K.S.A

email: ansari.abuzaid@gmail.com

Title:

Additive mappings satisfying algebraic identities in semiprime rings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 327-337

Received: 2021-08-29 , Revised: 2022-05-23 , Accepted: 2022-05-23 , Available online: 2023-01-13 , https://doi.org/10.7151/dmgaa.1422

Abstract:

Let R be a k-torsion free semiprime ring. Suppose that F,d:RR be two additive mappings which satisfy the algebraic identity F(x2n)=F(xn)α(xn)+β(xn)d(xn) for all xR, where α and β are automorphisms on R. Then F is a generalized (α,β)-derivation with associated (α,β)-derivation d on R, where k{2,n,2n1}. On the other hand, it is proved that f is a generalized Jordan left (α,β)-derivation associated with Jordan left (α,β)-derivation δ on R if they satisfy the algebraic identity f(x2n)=α(xn)f(xn)+β(xn)δ(xn) for all xR together with some restrictions on R.

Keywords:

semiprime rings, generalized (α,β)-derivation, generalized left (α,β)-derivation and additive mappings

References:

  1. S. Ali, On generalized left derivations in rings and Banach algebras, Aequat. Math. 81 (2011) 209–226.
    https://doi.org/10.1007/s00010-011-0070-5
  2. S. Ali and C. Haetinger, Jordan α-centralizer in rings and some applications, Bol. Soc. Paran. Mat. 26 (2008) (1–2) 71–80.
    https://doi.org/10.5269/bspm.v26i1-2.7405
  3. A.Z. Ansari, On identities with additive mappings in rings, Iranian J. Math. Sci. Inform. 15 (1) (2020) 125–133. http://ijmsi.ir/article-1-1051-en.html
  4. A.Z. Ansari and F. Shujat, Additive mappings covering generalized (α1,α2)-derivations in semiprime rings, Gulf J. Math. 11 (2) (2021) 19–26. https://gjom.org/index.php/gjom/article/view/495
  5. M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2) (2008) 253–261.
    https://doi.org/10.4134/BKMS.2008.45.2.253
  6. J.M. Cusack, Jordan derivations in rings, Proc. Amer. Math. Soc. 53 (2) (1975) 321–324.
    https://doi.org/10.1090/S0002-9939-1975-0399182-5
  7. F. Shujat and A.Z. Ansari, Additive mappings satisfying certain identities of semiprime rings, Preprint in Bulletin of Korean Mathematical Society.
  8. I.N. Herstein, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104–1110.
    https://doi.org/10.1090/S0002-9939-1957-0095864-2
  9. C. Lanski, Generalized derivations and n-th power maps in rings, Comm. Algebra 35 (11) (2007) 3660–3672.
    https://doi.org/10.1080/00927870701511426
  10. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. (1957) 1093–1100.
    https://doi.org/10.1090/S0002-9939-1957-0095863-0
  11. J. Vukman, On left Jordan derivations on rings and Banach algebras, Aequationes Math. 75 (2008) 260–266.
    https://doi.org/10.1007/s00010-007-2872-z
  12. S.M.A. Zaidi, M. Ashraf and S. Ali, On Jordan ideals and left (θ,θ)-derivation in prime rings, Int. J. Math. Math. Sci. 37 (2004) 1957–1965.
    https://doi.org/10.1155/S0161171204309075
  13. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991) 609–614. http://eudml.org/doc/247321
  14. J. Zhu and C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica 41 (1998) 795–800.
    https://doi.org/10.12386/A19980133

Close