Article in volume
Authors:
Title:
Additive mappings satisfying algebraic identities in semiprime rings
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 327-337
Received: 2021-08-29 , Revised: 2022-05-23 , Accepted: 2022-05-23 , Available online: 2023-01-13 , https://doi.org/10.7151/dmgaa.1422
Abstract:
Let R be a k-torsion free semiprime ring. Suppose that F,d:R→R be
two additive mappings which satisfy the algebraic identity F(x2n)=F(xn)α(xn)+β(xn)d(xn) for all x∈R, where α and β
are automorphisms on R. Then F is a generalized (α,β)-derivation
with associated (α,β)-derivation d on R, where k∈{2,n,2n−1}.
On the other hand, it is proved that f is a generalized Jordan left
(α,β)-derivation associated with Jordan left
(α,β)-derivation δ on R if they satisfy the algebraic
identity f(x2n)=α(xn)f(xn)+β(xn)δ(xn) for all x∈R
together with some restrictions on R.
Keywords:
semiprime rings, generalized (α,β)-derivation, generalized left (α,β)-derivation and additive mappings
References:
- S. Ali, On generalized left derivations in rings and Banach algebras, Aequat. Math. 81 (2011) 209–226.
https://doi.org/10.1007/s00010-011-0070-5 - S. Ali and C. Haetinger, Jordan α-centralizer in rings and some applications, Bol. Soc. Paran. Mat. 26 (2008) (1–2) 71–80.
https://doi.org/10.5269/bspm.v26i1-2.7405 - A.Z. Ansari, On identities with additive mappings in rings, Iranian J. Math. Sci. Inform. 15 (1) (2020) 125–133. http://ijmsi.ir/article-1-1051-en.html
- A.Z. Ansari and F. Shujat, Additive mappings covering generalized (α1,α2)-derivations in semiprime rings, Gulf J. Math. 11 (2) (2021) 19–26. https://gjom.org/index.php/gjom/article/view/495
- M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2) (2008) 253–261.
https://doi.org/10.4134/BKMS.2008.45.2.253 - J.M. Cusack, Jordan derivations in rings, Proc. Amer. Math. Soc. 53 (2) (1975) 321–324.
https://doi.org/10.1090/S0002-9939-1975-0399182-5 - F. Shujat and A.Z. Ansari, Additive mappings satisfying certain identities of semiprime rings, Preprint in Bulletin of Korean Mathematical Society.
- I.N. Herstein, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104–1110.
https://doi.org/10.1090/S0002-9939-1957-0095864-2 - C. Lanski, Generalized derivations and n-th power maps in rings, Comm. Algebra 35 (11) (2007) 3660–3672.
https://doi.org/10.1080/00927870701511426 - E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. (1957) 1093–1100.
https://doi.org/10.1090/S0002-9939-1957-0095863-0 - J. Vukman, On left Jordan derivations on rings and Banach algebras, Aequationes Math. 75 (2008) 260–266.
https://doi.org/10.1007/s00010-007-2872-z - S.M.A. Zaidi, M. Ashraf and S. Ali, On Jordan ideals and left (θ,θ)-derivation in prime rings, Int. J. Math. Math. Sci. 37 (2004) 1957–1965.
https://doi.org/10.1155/S0161171204309075 - B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991) 609–614. http://eudml.org/doc/247321
- J. Zhu and C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica 41 (1998) 795–800.
https://doi.org/10.12386/A19980133
Close