DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

A. Charoenpol

Aveya Charoenpol

Department of Mathematics, Faculty of Engineering
Rajamangala University of Technology Isan Khonkaen Campus
Thailand 40000

email: aveya.ch@rmuti.ac.th

Udom Chotwattakawanit

Udom Chotwattakawanit

Khon Kaen University

email: udomch@kku.ac.th

Title:

The pre-period of the glued sum of finite modular lattices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 223-231

Received: 2021-11-30 , Revised: 2021-12-13 , Accepted: 2022-01-04 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1420

Abstract:

The notion of a pre-period of an algebra $\mathbf{A}$ is defined by means of the notion of the pre-period $\lambda(f)$ of a monounary algebra $\langle A;f\rangle$: it is determined by $\sup\{\lambda(f)| f$ is an endomorphism of $\mathbf{A}\}$. In this paper we focus on the pre-period of a finite modular lattice. The main result is that the pre-period of any finite modular lattice is less than or equal to the length of the lattice; also, necessary and sufficient conditions under which the pre-period of the glued sum is equal to the length of the lattice, are shown. Moreover, we show the triangle inequality of the pre-period of the glued sum.

Keywords:

ordinal sum, glued sum, modular lattice, endomorphism, pre-period, connected unary operation

References:

  1. U. Chotwattakawanit and A. Charoenpol, A pre-period of a finite distributive lattice, Discuss. Math. General Alg. Appl. (to appear).
  2. K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science (Chapman & Hall, CRC Press, Boca Raton, London, New York, Washington DC, 2002).
  3. E. Halukova, Strong endomorphism kernel property for monounary algebras, Math. Bohemica 143 (2017) 1–11.
  4. E. Halukova, Some monounary algebras with EKP, Math. Bohemica 145 (2019) 1–14.
    https://doi.org/10.21136/MB.2017.0056-16
  5. D. Jakubikova-Studenovska, Homomorphism order of connected monounary algebras, Order 38 (2021) 257–269.
    https://doi.org/10.1007/s11083-020-09539-y
  6. D. Jakubikova-Studenovska and J. Pocs, Monounary algebras (P.J. Safarik Univ. Kosice, Kosice, 2009).
  7. D. Jakubikova-Studenovska and K. Potpinkova, The endomorphism spectrum of a monounary algebra, Math. Slovaca 64 (2014) 675–690.
    https://doi.org/10.2478/s12175-014-0233-7
  8. B. Jonsson, Topics in Universal Algebra (Lecture Notes in Mathematics 250, Springer, Berlin, 1972).
  9. M. Novotna, O. Kopeek and J. Chvalina, Homomorphic Transformations: Why and Possible Ways to How (Masaryk University, Brno, 2012).
  10. J. Pitkethly and B. Davey, Dualisability: Unary Algebras and Beyond (Advances in Mathematics 9, Springer, New York, 2005).
  11. B.V. Popov and O.V. Kovaleva, On a characterization of monounary algebras by their endomorphism semigroups, Semigroup Forum 73 (2006) 444–456.
    https://doi.org/10.1007/s00233-006-0635-0
  12. I. Pozdnyakova, Semigroups of endomorphisms of some infinite monounary algebras, J. Math. Sci. 190 (2013).
    https://doi.org/10.1007/s10958-013-1278-9
  13. C. Ratanaprasert and K. Denecke, Unary operations with long pre-periods, Discrete Math. 308 (2008) 4998–5005.
    https://doi.org/10.1142/S1793557109000170
  14. H. Yoeli, Subdirectly irreducible unary algebra, Math. Monthly 74 (1967) 957–960.
    https://doi.org/10.2307/2315275
  15. D. Zupnik, Cayley functions, Semigroup Forum 3 (1972) 349–358.
    https://doi.org/10.1007/BF02572972

Close