DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

T. Sahoo

Tapatee Sahoo

Department of Mathematics
Manipal Institute of Technology
Manipal Academy of Higher Education
Manipal, Karnataka, India

email: tapatee.sahoo@learner.manipal.edu

B.S. Kedukodi

Babushri Srinivas Kedukodi

Department of Mathematics
Manipal Institute of Technology
Manipal Academy of Higher Education
Manipal, Karnataka, India

email: babushrisrinivas.k@manipal.edu

P. Harikrishnan

Panackal Harikrishnan

Department of Mathematics
Manipal Institute of Technology
Manipal Academy of Higher Education
Manipal, Karnataka, India

email: pk.harikrishnan@manipal.edu

S.P. Kuncham

Syam Prasad Kuncham

Department of Mathematics
Manipal Institute of Technology
Manipal Academy of Higher Education
Manipal, Karnataka, India

email: syamprasad.k@manipal.edu

Title:

On the finite Goldie dimension of sum of two ideals of an R-group

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 177-187

Received: 2021-06-19 , Revised: 2021-11-27 , Accepted: 2021-11-27 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1419

Abstract:

We consider an $R$-group $G,$ where $R$ is a zero symmetric right nearring. We obtain the $\Omega$-dimension of sum of two ideals of $G$, as a natural generalization of sum of two subspaces of a finite dimensional vector space; indeed, difficulty due to non-linearity in $ G. $ However, in this paper we overcome the situation under a suitable assumption. More precisely, we prove that for a proper ideal $\Omega$ of $G$ with $\Omega$-finite Goldie dimension ($\Omega$-$FGD$), if $K_1, K_2$ are ideals of $G$ wherein $K_1\cap K_2$ is an $\Omega$-complement, then $dim_{\Omega}(K_1+K_2)=dim_{\Omega}(K_1)+ dim_{\Omega}(K_2)-dim_{\Omega}(K_1\cap K_2).$ In the sequel, we prove several properties.

Keywords:

nearring, essential ideal, uniform ideal, finite dimension

References:

  1. Aichinger E.,Binder F., Ecker F., Mayr P., & Nöbauer C., SONATA - system of near-rings and their applications, GAP package, Version 2.8; 2015. http://www.algebra.uni-linz.ac.at/Sonata/
  2. Anderson Frank W, Fuller, Kent R, Rings and categories of modules, Graduate Texts in Mathematics, Springer-Berlag New York, 13, 1992. https://doi.org/10.1007/978-1-4612-4418-9
  3. Bhavanari S., On modules with finite Goldie Dimension, J. Ramanujan Math. Soc. 5(1), 61-75, 1990.
  4. Bhavanari S., and Kuncham S.P., Linearly independent elements in $ N$-groups with Finite Goldie Dimension, Bull. Korean Math. Soc., 42(3), 433-441, 2005. https://doi.org/10.4134/BKMS.2005.42.3.433
  5. Bhavanari S., Goldie dimension and spanning dimension in modules and $ N $-groups, Nearrings, Nearfields and related topics (Review volume), World Scientific, 26-41, 2017. https://doi.org/10.1142/9789813207363\_0004
  6. Bhavanari S., Contributions to near-ring theory, Doctrol Thesis, Nagarjuna University, India, 1984.
  7. Bhavanari S., and Kuncham S.P., A result on E-direct systems in $ N $-groups, Indian J. pure appl. Math., 29(3), 285-287, 1998.
  8. Bhavanari S., and Kuncham S.P., Nearrings, fuzzy ideals, and graph theory. CRC press, 2013. https://doi.org/10.1201/b14934
  9. Bhavanari S., Kuncham S.P., Paruchuri V.R., and Mallikarjuna B., A note on dimensions in $N$-groups, Italian Journal of Pure and Applied Mathematics, 44, 649-657, 2020.
  10. Goldie A.W., The structure of noetherian rings, Lectures on Rings and Modules, vol 246. Springer, Berlin, Heidelberg, 1972. https://doi.org/10.1007/BFb0059567
  11. Kuncham S.P., Contributions to near-ring theory II. Diss. Doctoral Thesis, Nagarjuna University, 2000.
  12. Kuncham S.P, Kedukodi B.S., Harikrishnan P.K., and Bhavanari S. (Editors), Nearrings, Nearfields and Related Topics. World Scientific Publishing Company, 2017. https://doi.org/10.1142/10375
  13. Nayak Hamsa, Kuncham S.P., Kedukodi B.S., $\Theta$$Γ$ $N$-group,\textit{ Matematicki Vesnik}, 70(1), 64-78, 2018.
  14. Oswald A., Near-rings in which every N-subgroup is principal. Proceedings of the London Mathematical Society 3.1, 67-88, 1974. https://doi.org/10.1112/plms/s3-28.1.67
  15. Oswald A., Completely reducible near-rings, Proceedings of the Edinburgh Mathematical Society, 20(3), 187-197, 1977.
  16. Pilz G., Near-Rings: the theory and its applications, 23, North Holland, 1983.
  17. Tapatee S., Kedukodi B.S., Shum K.P., Harikrishnan P.K., Kuncham S.P., On essential elements in a lattice and Goldie analogue theorem, Asian-Eur. J. Math., 2250091: 2021. https://doi.org/10.1142/S1793557122500917
  18. Yenumula V.R., Bhavanari S., A note on $ N $-Groups, Indian J. Pure Appl. Math., 19(9), 842-845, 1988.

Close