DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

A. Charoenpol

Aveya Charoenpol

Department of Mathematics, Faculty of Engineering
Rajamangala University of Technology Isan Khonkaen Campus
Thailand 40000

email: aveya.ch@rmuti.ac.th

U. Chotwattakawanit

Udom Chotwattakawanit

Department of Mathematics, Faculty of Science
Khon Kean University
Thailand 40002

email: udomch@kku.ac.th

Title:

A pre-period of a finite distributive lattice

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 141-148

Received: 2021-02-19 , Revised: 2021-09-30 , Accepted: 2021-11-23 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1415

Abstract:

The notion of a pre-preriod of a finite bounded distributive lattice (BDL) $A$ is defined by means of the notion of a pre-period of a finite connected monounary algebra: it is the maximum value of the pre-period of an endomorphism and $0$-fixing connected mapping of $A$ to $A$. The main result is that the pre-period of any finite BDL is less than or equal to the length of the lattice; also, necessary and sufficient conditions under which it is equal to the length of the lattice, are shown.

Keywords:

distributive lattice, pre-period, connected unary operation, BDLC-algebra

References:

  1. A. Charoenpol and C. Ratanaprasert, A distributive lattice-based algebra : the BDLC, Far East J. Math. Sci. (FJMS) 100 (2016) 135–145.
    https://doi.org/10.17654/MS100010135
  2. A. Charoenpol and C. Ratanaprasert, All Subdirectly Irreducible BDLC-algebras, Far East J. Math. Sci. (FJMS) 100 (2016) 477–490.
    https://doi.org/10.17654/MS100030477
  3. K. Denecke and S.L. Wismath, Universal algebra and applications in theoretical computer science (Chapman & Hall, CRC Press, Boca Raton, London, New York, Washington DC, 2002).
  4. E. Halušková, Strong endomorphism kernel property for monounary algebras, Math. Bohemica 143 (2017) 1–11.
  5. E. Halušková, Some monounary algebras with EKP, Math. Bohemica 145 (2019) 1–14.
    https://doi.org/10.21136/MB.2017.0056-16
  6. D. Jakubíková-Studenovská, Homomorphism order of connected monounary algebras, Order 38 (2021) 257–269.
    https://doi.org/10.1007/s11083-020-09539-y
  7. D. Jakubíková-Studenovská and J. Pócs, Monounary algebras (P.J. Šafárik Univ. Košice, Košice, 2009).
  8. D. Jakubíková-Studenovská and K. Potpinková, The endomorphism spectrum of a monounary algebra, Math. Slovaca 64 (2014) 675–690.
    https://doi.org/10.2478/s12175-014-0233-7
  9. B. Jónsson, Topics in Universal Algebra (Lecture Notes in Mathematics 250, Springer, Berlin, 1972).
  10. M. Novotná, O. Kopeček and J. Chvalina, Homomorphic Transformations: Why and possible ways to How (Masaryk University, Brno, 2012).
  11. J. Pitkethly and B. Davey, Dualisability: Unary Algebras and Beyond (Advances in Mathe-matics 9, Springer, New York, 2005).
  12. B.V. Popov, O.V. Kovaleva, On a Characterization of Monounary Algebras by their Endomorphism Semigroups, Semigroup Forum 73 (2006) 444–456.
    https://doi.org/10.1007/s00233-006-0635-0
  13. I. Pozdnyakova, Semigroups of endomorphisms of some infinite monounary algebras, J. Math. Sci. 190 (2013).
    https://doi.org/10.1007/s10958-013-1278-9
  14. C. Ratanaprasert and K. Denecke, Unary operations with long pre-periods, Discrete Math. 308 (2008) 4998–5005.
    https://doi.org/10.1142/S1793557109000170
  15. H. Yoeli, Subdirectly irreducible unary algebra, Math. Monthly 74 (1967) 957–960.
    https://doi.org/10.2307/2315275
  16. D. Zupnik, Cayley functions, Semigroup Forum 3 (1972) 349–358.
    https://doi.org/10.1007/BF02572972

Close