Article in volume
Authors:
Title:
The automorphisms having the extension property in a category of a finite direct sum of cyclic modules
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 111-120
Received: 2020-06-08 , Revised: 2021-10-05 , Accepted: 2021-10-13 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1411
Abstract:
It is well known that the problem of characterizing the automorphisms, in the
category of abelian groups, with the extension property is resolved [1].
But in other categories, it is a very difficult problem. This paper extends the
result in [1] to a category of modules. Let $A$ be a unique
factorization integral domain (UFD). Consider $M$ a direct finite sum of cyclic
modules over $A$ where $Ann_{A}(M)=\{0\}$ and $\alpha$ an automorphism of $M$.
We give a necessary and sufficient condition such that $\alpha$ satisfies the
extension property.
Keywords:
integral domain, factorization, module, automorphism, torsion and torsion-free
References:
- S. Abdelalim and H. Essannouni, Characterization of the automorphisms of an Abelian group having the extension property, Portugaliae Math. (Nova) 59 (3) (2002) 325–333.
https://doi.org/org/10.1016/j.jtusci.2015.02.009 - S. Abdelalim, A. Chaicha and M. El garn, The Extension Property in the Category of Direct Sum of Cyclic Torsion-Free Modules over a BFD, in: The Moroccan Andalusian Meeting on Algebras and their Applications 2018, Ap, Springer, Cham. (Ed(s)), (2020) 313–323.
https://doi.org/org/10.1007/978-3-030-35256-1-17 - M. Barry, These: Caractérisation des anneaux commutatifs pour lesquels les modules vérifant (I) sont de types finis, Dissertation Doctorale (Université Cheikh anta diop de Dakar, Faculté des Sciences et Techniques, Département de Mathématiques et Informatique, 1998) 22–22.
- L. Ben Yakoub, Sur un Théorème de Schupp, Portugaliae Math. (Nova) 51 (2) (1994) 231–233.
https://doi.org/eudml.org/doc/47203 - E. Kunz, Introduction to commutative algebra and algebraic geometry (Springer Science & Business Media, 2013).
https://doi.org/10.1007/978-1-4614-5987-3 - M.R. Pettet, On Inner Automorphisms of Finite Groups, Proceedings of the American Mathematical Society 106 (1) (1989) 87–90.
https://doi.org/org/10.1090/S0002-9939-1989-0968625-8 - P.E. Schupp, A characterizing of inner automorphisms, in: Proc. Amer. Math. Soc. 101 (2) (1987) 226–228.
https://doi.org/10.1090/S0002-9939-1987-0902532-X
Close