Article in volume
Authors:
Title:
Using the Swing Lemma and $\boldsymbol{\mathcal{C}_1}$-diagrams for congruences of planar semimodular lattices
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 63-74
Received: 2021-06-06 , Revised: 2021-07-18 , Accepted: 2021-07-19 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1410
Abstract:
A planar semimodular lattice $K$ is slim if $\mathsf{M}_{3}$ is not a sublattice
of $K$. In a recent paper, G. Czédli found four new properties of congruence
lattices of slim, planar, semimodular lattices, including the No Child
Property: Let $\mathcal{P}$ be the ordered set of join-irreducible
congruences of $K$. Let $x,y,z \in \mathcal{P}$ and let $z$ be a maximal
element of $\mathcal{P}$. If $x \neq y$ and $x, y \prec z$ in $\mathcal{P}$,
then there is no element $u$ of $\mathcal{P}$ such that $u \prec x, y$ in
$\mathcal{P}$.
The Swing Lemma and a standardized diagram type are used to give direct proofs
of Czédli's four properties.
Keywords:
rectangular lattice, slim planar semimodular lattice, congruence lattice
References:
- G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125–154.
https://doi.org/10.1007/s00012-014-0294-z - G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis 72 (2014) 225–230.
https://doi.org/10.1007/s00012-014-0286-z - G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443–498.
https://doi.org/10.1007/s00012-017-0437-0 - G. Czédli, Lamps in slim rectangular planar semimodular lattices, Acta Sci. Math. (Szeged) 87 (2021) 381–413. \pagebreak
https://doi.org/10.14232/actasm-021-865-y0 - G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526
- G. Czédli and G. Grätzer, Notes on planar semimodular lattices VII. Resections of planar semimodular lattices, Order 30 (2013) 847–858.
https://doi.org/10.1007/s11083-012-9281-1 - G. Czédli and G. Grätzer, {Planar Semimodular Lattices: Structure and Diagrams}, Chapter 3 in \cite{LTS1}.
https://doi.org/10.1007/978-3-319-06413-0_3 - G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar, semimodular lattices. arXiv:2103.04458
- G. Czédli and E.T. Schmidt, The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices, Algebra Universalis 66 (1–2) (2011) 69–79.
https://doi.org/10.1007/s00012-011-0144-1 - G. Czédli and E.T. Schmidt, Slim semimodular lattices I. A visual approach, ORDER 29 (2012) 481–497.
https://doi.org/10.1007/s11083-011-9215-3 - A. Day, Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Canad. J. Math. 31 (1979) 69–78.
- R. Freese, J. Ježek and J.B. Nation, Free Lattices, Mathematical Surveys and Monographs 42 (American Mathematical Society, Providence, RI, 1995).
https://doi.org/10.1090/surv/042 - G. Grätzer, {Planar Semimodular Lattices: Congruences}, Chapter 4 in \cite{LTS1}.
https://doi.org/10.1007/978-3-319-06413-0\_4 - G. Grätzer, Notes on planar semimodular lattices VI. On the structure theorem of planar semimodular lattices, Algebra Universalis 69 (2013) 301–304.
https://doi.org/10.1007/s00012-013-0233-4 - G. Grätzer, Two Topics Related to Congruence Lattices of Lattices, Chapter 10 in \cite{LTS1}.
https://doi.org/10.1007/978-3-319-06413-0_10 - G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397.
https://doi.org/10.1007/978-3-319-38798-7_25 - G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25–32.
https://doi.org/10.14232/actasm-014-024-1 - G. Grätzer, The Congruences of a Finite Lattice, A {Proof-by-Picture} Approach, Second Edition (Birkhäuser, 2016). Part I is accessible at arXiv:2104.06539
https://doi.org/10.1007/978-3-319-38798-7 - G. Grätzer, Congruences of fork extensions of lattices, Algebra Universalis 76 (2016) 139–154.
- G. Grätzer, Congruences and trajectories in planar semimodular lattices, Discuss. Math. GAA 38 (2018) 131–142.
https://doi.org/10.7151/dmgaa.1280 - G. Grätzer, Notes on planar semimodular lattices VIII. Congruence lattices of SPS lattices, Algebra Universalis 81 (2020).
https://doi.org/10.1007/s00012-020-0641-1 - G. Grätzer, A gentle introduction to congruences of planar semimodular lattices, Presentation at the meeting AAA 101, Novi Sad, 2021.
- G. Grätzer, Notes on planar semimodular lattices IX. On Czédli diagrams. arXiv:1307.0778
- G. Grätzer and E. Knapp, Notes on planar semimodular lattices I. Construction, Acta Sci. Math. (Szeged) 73 (2007) 445–462.
- G. Grätzer and E. Knapp, A note on planar semimodular lattices, Algebra Universalis 58 (2008) 497–499.
https://doi.org/10.1007/s00012-008-2089-6 - G. Grätzer and E. Knapp, Notes on planar semimodular lattices II. Congruences, Acta Sci. Math. (Szeged) 74 (2008) 37–47.
- G. Grätzer and E. Knapp, Notes on planar semimodular lattices III. Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.
- G. Grätzer and E. Knapp, Notes on planar semimodular lattices IV. The size of a minimal congruence lattice representation with rectangular lattices, Acta Sci. Math. (Szeged) 76 (2010) 3–26.
- G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297.
https://doi.org/10.4153/cmb-1998-041-7 - G. Grätzer and T. Wares, Notes on planar semimodular lattices V. Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices, Acta Sci. Math. (Szeged) 76 (2010) 27–33.
- G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications 1 (Birkhäuser Verlag, Basel, 2014).
https://doi.org/10.1007/978-3-319-06413-0 - B. Jónsson and J.B. Nation, Representation of $2$-distributive modular lattices of finite length, Acta Sci. Math. (Szeged) 51 (1987) 123–128.
- R.N. McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972) 1–43.
- J.B. Nation, Bounded finite lattices. Universal algebra (Esztergom, 1977), 531–533, Colloq. Math. Soc. János Bolyai 29 (North-Holland, Amsterdam-New York, 1982).
- J.B. Nation, Revised Notes on Lattice Theory. http://www.math.hawaii.edu/ jb/books.html
Close