Article in volume
Authors:
Title:
Notes on planar semimodular lattices IX $\boldsymbol{\mathcal{C}_1}$-diagrams
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 25-29
Received: 2021-05-05 , Revised: 2021-05-30 , Accepted: 2021-05-30 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1409
Abstract:
A planar semimodular lattice $L$ is slim if $\mathsf M_3$ is not a
sublattice of $L$. In a recent paper, G. Czédli introduced a very powerful
diagram type for slim, planar, semimodular lattices, the
$\mathcal{C}_1$-diagrams. This short note proves the existence of such diagrams.
Keywords:
$\mathcal{C}_1$-diagrams, slim planar semimodular lattice
References:
- G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125–154.
https://doi.org/10.1007/s00012-014-0294-z - G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis 72 (2014) 225–230.
https://doi.org/10.1007/s00012-014-0286-z - G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443–498.
https://doi.org/10.1007/s00012-017-0437-0 - G. Czédli, Lamps in slim rectangular planar semimodular lattices, Acta Sci. Math. (Szeged).
https://doi.org/10.14232/actasm-021-865-y0 - G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526
- G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar, semimodular lattices. arXiv:2103.04458
- G. Czédli and E.T. Schmidt, Slim semimodular lattices I. A visual approach, ORDER 29 (2012) 481-497.
https://doi.org/10.1007/s11083-011-9215-3 - G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397.
https://doi.org/10.1007/978-3-319-38798-\_25 - G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25–32.
https://doi.org/10.14232/actasm-014-024-1 - G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, Second Edition (Birkhäuser, 2016). Part I is accessible at arXiv:2104.06539.
https://doi.org/10.1007/978-3-319-38798-7 - G. Grätzer, Congruences of fork extensions of slim, planar, semimodular lattices, Algebra Universalis 76 (2016) 139–154.
https://doi.org/10.1007/s00012-016-0394-z - G. Grätzer, Notes on planar semimodular lattices VIII. Congruence lattices of SPS lattices, Algebra Universalis 81 (2020).
https://doi.org/10.1007/s00012-020-0641-1 - G. Grätzer, Applying the Swing Lemma and Czédli diagrams to congruences of planar semimodular lattices. arXiv:214.13444
- G. Grätzer, A gentle introduction to congruences of planar semimodular lattices, Presentation at the meeting AAA 101 (Novi Sad, 2021).
- G. Grätzer and E. Knapp, Notes on planar semimodular lattices III. Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.
- G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297.
https://doi.org/10.4153/cmb-1998-041-7
Close