DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

S.K. Sardar

Sujit Kumar Sardar

Department of Mathematics
Jadavpur University, Kolkata, India

email: sujitk.sardar@jadavpuruniversity.in

M. Das

Monali Das

Department of Mathematics
Jadavpur University, Kolkata, India

email: monali.ju7@gmail.com

Title:

On some Morita invariant radicals of semirings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 85-100

Received: 2021-04-06 , Revised: 2021-08-20 , Accepted: 2021-08-23 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1408

Abstract:

In this paper we prove that if $R$ and $S$ are Morita equivalent semirings via Morita context $(R,S,P,Q,\theta,\phi)$, then there exists a one-to-one inclusion preserving correspondence between the set of all prime ((right) strongly prime, uniformly strongly prime) ideals of $R$ and the set of all prime (resp. (right) strongly prime, uniformly strongly prime) subsemimodules of $P$. We also show that prime radicals, (right) strongly prime radicals, uniformly strongly prime radicals are preserved under Morita equivalence of semirings.

Keywords:

Morita context, Morita equivalence, semiring, semimodule, radical, prime subsemimodule, strongly prime subsemimodule, uniformly strongly prime, subsemimodule

References:

  1. J. Adamek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (John Wiley & Sons, Inc., New York, 1990).
  2. K. Dey, S. Gupta and S.K. Sardar, Morita invariants of semirings related to a Morita context, Asian-European J. Math. 12 (2) (2019) 1950023 (15 pages).
    https://doi.org/10.1142/S1793557119500232
  3. T.K. Dutta and M.L. Das, On strongly prime semiring, Bull. Malaysian Math. Sci. Soc. 30 (2) (2007) 135–141.
  4. T.K. Dutta and M.L. Das, On uniformly strongly prime semiring, Int. J. Math. Anal. 2 (1–3) (2006) 73–82.
  5. J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, Dordrecht, 1999).
  6. S. Gupta and S.K. Sardar, Morita invariants of semirings-II, Asian-European J. Math. 11 (1) (2018) 1850014.
    https://doi.org/10.1142/S1793557118500146
  7. D. Handelman and J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc. 211 (1975) 209–223.
    https://doi.org/10.1090/s0002-9947-1975-0387332-0
  8. U. Hebisch and H.J. Weinert, Semirings and semifields, Handbook Alg. 1 (1996) 425–462.
    https://doi.org/10.1016/s1570-7954(96)80016-7
  9. U. Hebisch and H.J. Weinert, Radical theory for semirings, Quaest. Math. 20 (4) (1997) 647–661.
    https://doi.org/10.1080/16073606.1997.9632232
  10. Y. Katsov and T.G. Nam, Morita equivalence and homological characterization of semirings, J. Alg. Its Appl. 10 (3) (2011) 445–473.
    https://doi.org/10.1142/S0219498811004793
  11. S. Mac Lane, Categories for the Working Mathematician (Springer, New York, 1971).
  12. K. Morita, Duality of modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Section A 6 (150) (1958) 83–142.
  13. D.M. Olson, A uniformly strongly prime radical, J. Austral. Math. Soc., Ser. A 43 (1) (1987) 95–102.
    https://doi.org/10.1017/s1446788700029013
  14. S.K. Sardar, S. Gupta and B.C. Saha, Morita equivalence of semirings and its connection with Nobusawa $Γ$-semirings with unities, Alg. Colloq. 22 (Spec 1) (2015) 985–1000.
    https://doi.org/10.1142/S1005386715000826
  15. S.K. Sardar and S. Gupta, Morita invariants of semirings, J. Algebra Appl. 15 (2) (2016) 14pp. 1650023.
    https://doi.org/10.1142/S0219498816500237

Close