DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

G.N. Sudharshana

Govindarajulu Narayanan Sudharshana

Department of Mathematics
Annamalai University
Chidambaram 608001, Tamil Nadu, India

email: sudharshanasss3@gmail.com

D. Sivakumar

Duraisamy Sivakumar

Department of Mathematics
Annamalai University
Chidambaram 608001, Tamil Nadu, India

email: sivakumarmaths1965@gmail.com

Title:

Strongly regular modules

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 53-62

Received: 2021-04-09 , Revised: 2021-06-23 , Accepted: 2021-06-28 , Available online: 2022-11-29 , https://doi.org/10.7151/dmgaa.1406

Abstract:

The notion of strongly regular modules over a ring which is not necessarily commutative is introduced. The relation between $F$-regular, $GF$-regular and $vn$-regular modules that are defined over commutative rings and strongly regular module is obtained. We have shown that a remark that if $R$ is a reduced ring, then the $R$-module $M$ is $F$-regular if and only if $M$ is $GF$-regular is false. We have obtained the necessary and sufficient condition under which the remark is true. We have shown that if $R$ is a commutative ring and if $M$ is finitely generated multiplication module then the notion of $F$-regular, $GF$-regular, $vn$-regular and strongly regular are equivalent.

Keywords:

strong $M$-$vn$-regular element, strongly regular module, $F$-regular module, $GF$-reguar module, $vn$-regular module, weak commutative module

References:

  1. F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (Springer-Verlag, 1974).
  2. M.A. Abduldaim and S. Chen, $GF$-Regular modules, J. Appl. Math., Article ID 630285 (2013), 7 pages.
    https://doi.org/10.1155/2013/630285
  3. R.F. Arens and I. Kaplansky, Topological representations of algebras, Trans. Amer. Math. Soc. 63 (1948) 457–481.
    https://doi.org/10.2307/1990570
  4. T. Cheatham and E. Enochs, Regular modules, Math. Japonica 26 (1) (1981) 9–12.
  5. D.J. Fieldhouse, Purity and flatness, Ph.D. Thesis (McGill University, Montreal, Canada, 1967).
  6. D.J. Fieldhouse, Pure theories, Math. Ann. 184 (1969) 1–18.
  7. C. Jayaraman and U. Tekir, Von Neumann regular modules, Comm. Alg. 46 (5) (2018) 2205–2217.
    https://doi.org/10.1080/00927872.2017.1372460
  8. T. Kando, Strong regularity in arbitrary rings, Nagoya Math. J. 4 (1952) 51–53.
  9. T.Y. Lam, Lectures on Modules and Rings (Springer, 1999).
  10. M. Majid Ali and J. David Smith, Pure submodules of multiplication modules, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry 45 (10 (2004) 61–74.
  11. N.H. Mc Coy, The Theory of Rings (Chelsca Publishing Company, 1973).
  12. P. Ribenboim, Algebraic Numbers (Wiley, 1972).
  13. D. Ssevviiri, On completely prime submodules, Int. Electronic J. Alg. 19 (2016) 77–90.
    https://doi.org/10.24330/ieja.266194
  14. G.N. Sudharshana and D. Sivakumar, On Von Neumann regular mModules, Adv. Math. Sci. J. 9 (4) (2020) 1921–1931.
    https://doi.org/10.37418/amsj.9.4.51

Close