Article in volume
Authors:
Title:
Note on tranjugate lattice matrices
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 41-52
Received: 2020-11-07 , Revised: 2020-12-24 , Accepted: 2021-06-17 , Available online: 2022-11-29 , https://doi.org/10.7151/dmgaa.1405
Abstract:
In this paper, we extend the notion of tranjugate lattice matrices and we show
that a square lattice matrix can be expressed as meet (or greatest lower bound
or infimum) of symmetric and tranju ate lattice matrices and we discuss their
uniqueness.
Keywords:
complete and completely distributive lattice, lattice vector space, skew symmetric matix, tranjugate matrix
References:
- G. Birkhoff, Lattice Theory, American Mathematical Society $3^{rd}$ edition (Providence, RI, USA, 1967).
- T.S. Blyth, Pseudo-complementation, Stone and Heyting algebras, in: T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer Science and Business Media, 2006), 103–118.
- W.-K. Chen, Boolean matrices and switching nets, Math. Magazine 39 (1) (1966) 1–8.
https://doi.org/10.2307/2688986 - Y. Give'on, Lattice matrices, Information and Control 7 (4) (1964) 477–84.
https://doi.org/10.1016/S0019-9958(64)90173-1 - G. Gratzer, General Lattice Theory (Academic Press, New York, San Francisco, 1978).
- R. Gudepu and D.P.R.V.S. Rao, A public key cryptosystem based on lattice matrices, J. Math. Comput. Sci. 10 (6) (2020) 2408–2421.
https://doi.org/10.28919/jmcs/4882 - G. Joy, A Study on Lattice Matrices (Mahatma Gandhi University, India, 2018). http://hdl.handle.net/10603/273450.
- S. Lang, Introduction to Linear Algebra, $2^{nd}$ edition (Springer, United States of America, 1985).
- R.D. Luce, A note on Boolean matrix theory, Proc. Amer. Math. Soc. 3 (3) (1952) 382–388.
https://doi.org/10.1090/S0002-9939-1952-0050559-1 - H. Rasiowa, An Algebraic Approch to Non-Clasical Logics (North-Holland Publishing Company, Amsterdam, London, 1974).
- Y.-J. Tan, Eigenvalues and eigenvectors for matrices over distributive lattices, Linear Algebra Appl. 283 (1998) 257–272.
https://doi.org/10.1016/S0024-3795(98)10105-2 - Y.-J. Tan, On compositions of lattice matrices, Fuzzy Sets and Systems 129 (2002) 19–28.
https://doi.org/10.1016/S0165-0114(01)00246-9
Close