DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

Dr. Al-omary

Radwan Mohammed Al-omary

Department of mathematics, Ibb ubiversity, Ibb, YEMEN.

email: raradwan959@gmail.com

0000-0001-5334-6169

S.K. Nauman

S. Khalid Nauman

Department of Mathematics
Jinnah University for Women Karachi,\
Pakistan

email: synakhaled@hotmail.com

Title:

On prime rings with involution and generalized derivations

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 31-39

Received: 2020-10-30 , Revised: 2021-06-10 , Accepted: 2021-06-10 , Available online: 2022-11-29 , https://doi.org/10.7151/dmgaa.1404

Abstract:

In this note we investigate some commutativity conditions on prime rings with involutions by using some generalized derivations. We have provided a counter example as well.

Keywords:

$*$-ideals, involution, $*$-prime rings, derivations and generalized derivations

References:

  1. R.M. Al-omary and S.K. Nauman, Generalized derivations on prime rings satisfying certain identities, Commun. Korean Math. Soc. 36 (2) (2021) 229–238.
    https://doi.org/10.4134/CKMS.c200227
  2. M. Ashraf and M.A Siddeeque, Certain differential identities in prime rings with involurion, Miskolc Math. Notes 16 (1) (2015) 33–44.
    https://doi.org/10.18514/MMN.2015.1089
  3. M. Ashraf and M.R. Jamal, Generalized derivations on $*$-prime rings, Kyungpook Math. J. 58 (2018) 484–488.
    https://doi.org/10.5666/KMJ.2018.58.3.481
  4. K. Emine and N. Rehman, Notes on generalized derivations of $\ast$-prime rings, Miskolc Math. Notes 1 (1) (2014) 117–123.
    https://doi.org/10.18514/MMN.2014.779
  5. S.K. Nauman, N. Rehman and R.M. Al-Omary, Lie ideals, Morita context and generalized $(\alpha,\beta )$-derivations, Acta Math. Sci. 33 (4) (2011) 1059–1070.
    https://doi.org/10.1016/S0252-9602(13)60063-6
  6. L. Oukhtite and S. Salhi, Commutativity of $\sigma$-prime rings, Glasnik Mathematicki 41 (2006) 57–64.
    https://doi.org/10.3336/gm.41.1.05
  7. L. Oukhtite and S. Salhi, Derivations and commutativity of $\sigma$-prime rings, Int. J. Contept. Math. Sci. 1 (2006) 439–448.
  8. L. Oukhtite, S. Salhi and L. Taoufiq, Commutativity conditions on derivations and Lie ideals in $\sigma$-prime rings, Beitrage. Algebra. Geom. 51 (1) (2010) 275–282.
  9. M.R. Khan, D. Arora and M.A. Khan, $\sigma$-ideals and generalized derivation in $\sigma $-prime rings, Bol. Soc. Paran. Mat. 31 (2) (2012) 113–119.
    https://doi.org/10.5269/bspm.v31i2.12119
  10. N. Rehman and O. Golbasi, Notes on $(\alpha ,\beta)$-generalized derivations of $\ast $-prime rings, Palestine J. Math. 5 (2) (2016) 258–269.
  11. N. Rehman, R.M. Al-Omary and A.Z. Ansari, On Lie ideals of prime rings with generalized derivations, Bol. Soc. Mat. Mex. 21 (1) (2015) 19–26.
    https://doi.org/10.1007/s40590-014-0029-3
  12. N. Rehman and R.M. Al-Omary, On Commutativity of $2$-torsion free $\ast$-prime rings with Generalized Derivations, Mathematica 53 (2) (2011) 177–180.
  13. B.H. Shafee and S.K. Nauman, On extensions of right symmetric rings without identity, APM 4 (2014) 665–673.
    https://doi.org/10.4236/apm.2014. 412075
  14. H. Shuliang, Generalized derivations of $\sigma$-prime rings, Int. J. Algebra 18 (2) (2008) 867–873.

Close