DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

S. Visweswaran

Subramanian Visweswaran

Saurashtra University

email: s_visweswaran2006@yahoo

H.D. Patel

Hiren D. Patel

Faculty, Government Polytechnic
Bhuj-370001, Gujarat, India

email: hdp12376@gmail.com

0000-0002-4420-318X

Title:

Some remarks on the complement of the Armendariz graph of a commutative ring

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 5-24

Received: 2021-02-04 , Revised: 2021-05-13 , Accepted: 2021-05-19 , Available online: 2022-11-29 , https://doi.org/10.7151/dmgaa.1403

Abstract:

Let $R$ be a commutative ring with identity which is not an integral domain. Let $Z(R)$ denote the set of all zero-divisors of $R$. Recall from [1] that the Armendariz graph of $R$ denoted by $A(R)$ is an undirected graph whose vertex set is $Z(R[X])\backslash \{0\}$ and distinct vertices $f(X) = \sum_{i = 0}^{n}a_{i}X^{i}$ and $g(X) = \sum_{j = 0}^{m}b_{j}X^{j}$ are adjacent in $A(R)$ if and only if $a_{i}b_{j} = 0$ for all $i\in \{0, \ldots, n\}$ and $j\in \{0, \ldots, m\}$. The aim of this article is to study the interplay between the graph-theoretic properties of the complement of $A(R)$, that is, $(A(R))^{c}$ and the ring-theoretic properties of $R$.

Keywords:

B-prime of $(0)$, complement of the zero-divisor graph, diameter, domination number, maximal N-prime of $(0)$, radius

References:

  1. C. Abdioglu, E.Y. Celikel, and A. Das, The Armendariz graph of a ring, Discuss. Math. Gen. Algebra Appl. 38 (2018) 189–197.
    https://doi.org/10.7151/dmgaa.1292
  2. D.F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999) 434–447.
    https://doi.org/10.1006/jabr.1998.7840
  3. D.F. Anderson, M.C. Axtell, and J.A. Stickles Jr., Zero-divisor graphs in commutative rings, in: Commutative Algebra, Noetherian and Non-Noetherian Perspectives, M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson (Eds), (Springer-Verlag, New York, 2011) 23–45.
    https://doi.org/10.1007/978-1-4419-6990-3$\_$2
  4. D.F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean Algebras, J. Pure Appl. Algebra 180 (3) (2003) 221–241.
    https://doi.org/10.1016/S0022-4049(02)00250-5
  5. M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, Massachusetts, 1969).
  6. M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (6) (2005) 2043–2050.
    https://doi.org/10.1081/AGB-200063357
  7. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (Universitext, Springer, New York, 2000).
  8. I. Beck, Coloring of commutative rings, J. Algebra 116 (1) (1988) 208–226.
    https://doi.org/10.1016/0021-8693(88)90202-5
  9. N. Deo, Graph Theory with Applications to Engineering and Computer Science (Prentice -Hall of India Private Limited, New Delhi, 1994).
  10. N. Ganesan, Properties of rings with a finite number of zero-divisors, Math. Ann. 157 (1964) 215–218.
    https://doi.org/10.1007/BF01362435
  11. R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1) (1980) 13–16.
    https://doi.org/10.2307/2042378
  12. W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (2) (1971) 273–284.
    https://doi.org/10.1090/S0002-9947-1971-0280472-2
  13. W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc. 34 (1) (1972) 73–74.
    https://doi.org/10.1090/S0002-9939-1972-0294316-2
  14. I. Kaplansky, Commutative Rings (The University of Chicago Press, Chicago, 1974).
  15. T.G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (1) (2006) 174–193.
    https://doi.org/10.1016/j.jalgebra.2006.01.019
  16. N.H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (5) (1942) 286–295.
    https://doi.org/10.1080/00029890.1942.11991226
  17. M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A 73 (1997) 14–17.
    https://doi.org/10. 3792/pjaa.73.14.Source OAI
  18. S. Visweswaran, Some results on the complement of the zero-divisor graph of a commutative ring, J. Algebra Appl. 10 (3) (2011) 573–595.
    https://doi.org/10.1142/S0219498811004781
  19. S. Visweswaran, Some properties of the complement of the zero-divisor graph of a commutative ring, ISRN Algebra 2011 (Article ID 591041) 24 pages.
    https://doi.org/10.5402/2011/591041
  20. S. Visweswaran, When does the complement of the zero-divisor graph of a commutative ring admit a cut vertex?, Palestine J. Math. 1 (2) (2012) 138–147.
  21. S. Visweswaran and Pravin Vadhel, On the dominating sets of the complement of the annihilating ideal graph of a commutative ring, Gulf J. Math. 4 (1) (2016) 27–38.

Close