DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

A. Jamadar

Amlan Jamadar

Department of Mathematics, Visva-Bharati University
Santiniketan, Bolpur-731235, West Bengal, India

email: amlanjamadar@gmail.com

K. Hansda

Kalyan Hansda

Department of Mathematics, Visva-Bharati University
Santiniketan, Bolpur-731235, West Bengal, India

email: kalyanh4@gmail.com

Title:

On right inverse ordered semigroups

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 75-83

Received: 2018-05-27 , Revised: 2020-08-09 , Accepted: 2021-07-31 , Available online: 2022-11-29 , https://doi.org/10.7151/dmgaa.1402

Abstract:

$\newcommand{\rc}{\mathcal{R}}$ A regular ordered semigroup $S$ is called right inverse if every principal left ideal of $S$ is generated by an $\rc$-unique positive element of it. We prove that a regular ordered semigroup is right inverse if and only if any two inverses of an element $a\in S$ are $\rc$-related. Furthermore the class of right Clifford ordered semigroups have been characterized by the class of right inverse ordered semigroups.

Keywords:

ordered regular, ordered inverse, positive element, completely regular, right inverse

References:

  1. A.K. Bhuniya and K. Hansda, Completely regular and Clifford ordered semigroups, Afrika Matematika 31 (2020) 1029–1045.
    https://doi.org/10.1007/s13370-020-00778-1
  2. G.L. Bailes, Right inverse semigroups, J. Algebra 26 (1973) 492–507.
    https://doi.org/10.1016/0021-8693(73)90010-0
  3. N. Kehayopulu, Remark in ordered semigroups, Math. Japonica 35 (1990) 1061–1063.
  4. N. Kehayopulu, Ideals and Green's relations in ordered semigroups, Int. J. Math. and Math. Sci. (2006) 1–8.
    https://doi.org/10.1155/IJMMS/2006/61286
  5. S.K. Lee and Y.I. Kwon, On completely regular and quasi-completely regular ordered semigroups, Sci. Math. 2 (1998) 247–251.
  6. T. Saito, Ordered idempotent semigroups, J. Math. Soc. Japan 14 (2) (1962) 150–169.
  7. T. Saito, Ordered inverse semigroups, Trans. Amer. Math. Soc 153 (1971) 99–138.
    https://doi.org/10.2307/1995550
  8. P.S. Venkatesan, Right (left) inverse semigroups, J. Algebra 31 (1974) 209–217.
    https://doi.org/10.1016/0021-8693(74)90064-7
  9. P.S. Venkatesan, On right unipotent semigroups, Pacific J. Math. 63 (1976) 555–561.
    https://doi.org/10.2140/pjm.1976.63.555
  10. P.S. Venkatesan, On right unipotent semigroups II, Glasgow Math. J. 19 (1978) 63–68.
    https://doi.org/10.1017/S0017089500003384
  11. P.S. Venkatesan, Bisimple left inverse semigroups, Semigroup Forum 4 (1972) 34–45.
    https://doi.org/10.1007/BF02570767

Close