DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

A. Das

Angsuman Das

Department of Mathematics
Presidency University, Kolkata, India

email: angsuman.maths@presiuniv.ac.in

S. Biswas

Sucharita Biswas

Department of Mathematics
Presidency University, Kolkata, India

email: biswas.sucharita56@gmail.com

M. Saha

Manideepa Saha

Department of Mathematics
Presidency University, Kolkata, India

email: manideepasaha1991@gmail.com

Title:

Generalized Andrásfai Graphs

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 449-462

Received: 2020-04-29 , Revised: 2021-03-07 , Accepted: 2022-07-08 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1401

Abstract:

In this paper, we introduce a new family of circulants $GA(t,k)$, called Generalized Andrásfai graphs, where $t,k\geq 2$ are integers. We study various parameters like diameter, girth, domination number etc. of $GA(t,k)$. Moreover, we find the full automorphism group of $GA(t,k)$ and compute its determining number.

Keywords:

circulant graph, automorphism group

References:

  1. B. Andrásfai, Graphentheoretische Extremalprobleme, Acta Math. Acad. Sci. Hungar. 15 (1964) 413–438.
    https://doi.org/10.1007/BF01897150
  2. D.L. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin. 13 2006.
    https://doi.org/10.37236/1104
  3. O. Ebsen and M. Schacht, Homomorphism threshold for odd cycles, Combinatorica 40 (2020) 39–62.
    https://doi.org/10.1007/s00493-019-3920-8
  4. C. Godsil and G.F. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207 (Springer-Verlag, 2001).
  5. S. Letzter and R. Snyder, The homomorphism threshold of $\{C_3, C_5\}$-free graphs, J. Graph Theory 90 (2019) 83–106.
    https://doi.org/10.1002/jgt.22369
  6. S.B. Pejman, S. Payrovi and A. Behtoei, Metric dimension of Andrásfai Graphs, Opuscula Math. 39 (3) (2019) 415–423.
    https://doi.org/10.7494/OpMath.2019.39.3.415

Close