Article in volume
Authors:
Title:
Generalized Andrásfai Graphs
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 449-462
Received: 2020-04-29 , Revised: 2021-03-07 , Accepted: 2022-07-08 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1401
Abstract:
In this paper, we introduce a new family of circulants $GA(t,k)$, called
Generalized Andrásfai graphs, where $t,k\geq 2$ are integers. We study
various parameters like diameter, girth, domination number etc. of $GA(t,k)$.
Moreover, we find the full automorphism group of $GA(t,k)$ and compute its
determining number.
Keywords:
circulant graph, automorphism group
References:
- B. Andrásfai, Graphentheoretische Extremalprobleme, Acta Math. Acad. Sci. Hungar. 15 (1964) 413–438.
https://doi.org/10.1007/BF01897150 - D.L. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin. 13 2006.
https://doi.org/10.37236/1104 - O. Ebsen and M. Schacht, Homomorphism threshold for odd cycles, Combinatorica 40 (2020) 39–62.
https://doi.org/10.1007/s00493-019-3920-8 - C. Godsil and G.F. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207 (Springer-Verlag, 2001).
- S. Letzter and R. Snyder, The homomorphism threshold of $\{C_3, C_5\}$-free graphs, J. Graph Theory 90 (2019) 83–106.
https://doi.org/10.1002/jgt.22369 - S.B. Pejman, S. Payrovi and A. Behtoei, Metric dimension of Andrásfai Graphs, Opuscula Math. 39 (3) (2019) 415–423.
https://doi.org/10.7494/OpMath.2019.39.3.415
Close