Article in volume
Authors:
Title:
$(M,N)$-double-framed soft $bi$-ideals of Abel Grassmann's groupoids
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 425-448
Received: 2020-10-15 , Revised: 2021-01-28 , Accepted: 2022-07-05 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1400
Abstract:
The left invertive law makes Abel Grassmann's groupoids (briefly AG-groupoids)
a very interesting structure to study. In this paper, we define
$(M,N)$-double-framed soft bi-ideals (briefly $(M,N)$-DFS bi-ideals) and
$(M,N)$-double-framed soft generalized bi-ideals (briefly $(M,N)$-DFS
generalized bi-ideals) of AG-groupoids and study some of its properties. We
obtain some interesting results of these notions in intra-regular AG-groupoids.
Keywords:
DFS-set, $(M,N)$-DFS AG-groupoid, $(M,N)$-DFS generalized bi-ideal, $(M,N)$-DFS bi-ideal, DFS int-uni product
References:
- U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458–3463.
https://doi.org/10.1016/j.camwa.2010.03.034 - A.O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011) 592–601.
https://doi.org/10.1016/j.camwa.2010.12.005 - T. Asif, F. Yousafzai, A. Khan and K. Hila, Ideal theory in ordered AG-groupoids based on double framed soft sets, J. Mult.-Valued Logic Soft Comput. 33 (2019) 27–49.
- N. Cagman and S. Enginoglu, FP-soft set theory and its applications, Ann. Fuzzy Math. Inform. 2 (2011) 219–226.
- J.R. Cho, Pusan, J. Jezek and T. Kepka, Paramedial groupoids, Czechoslovak Math. J. 49 (124) (1996) 277–290.
https://doi.org/10.1023/A:1022448218116 - B. Davvaz, M. Khan, S. Anis and S. Haq, Generalized fuzzy quasi-ideals of an intra-regular Abel-Grassmann's groupoid, J. Appl. Math. 2012, Art. ID 627075, 16 pp.
https://doi.org/10.1155/2012/627075 - W.A. Dudek, M. Khan and N. Khan, Characterizations of intra-regular Abel-Grassmann's groupoids, J. Intell. Fuzzy Systems 27 (2014) 2915–2925.
https://doi.org/10.3233/IFS-141251 - F. Feng, Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inform. 2 (2011) 69–80.
- F. Feng, Y.B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621–2628.
https://doi.org/10.1016/j.camwa.2008.05.011 - P. Holgate, Groupoids satisfying a simple invertive law, Math. Students 61 (1992) 101–106.
https://doi.org/10.1007/BF00163844 - M. Izhar and A. Khan, On $(M,N)$-DFS ideals of AG-groupoids, J. Intell. Fuzzy Sys. 35 (2018) 6313–6327.
https://doi.org/10.3233/JIFS-181119 - M. Izhar, A. Khan and K. Hila, Double-framed soft generalized bi-ideals of intra-regular AG-groupoids, J. Intell. Fuzzy Sys. 35 (2018) 4701–4715.
https://doi.org/10.3233/JIFS-181188 - Y.B. Jun, K.J. Lee and A. Khan, Soft ordered semigroups, Math. Logic Q. 56 (2010) 42–50.
https://doi.org/10.1002/malq.200810030 - Y.B. Jun and S.S. Ahn, Double-framed soft sets with applications in BCK/BCI-algebras, J. Appl. Math. 2012, 15 pages.
https://doi.org/10.1155/2012/178159 - Y.B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408–1413.
https://doi.org/10.1016/j.camwa.2008.02.035 - Y.B. Jun, K.J. Lee and C.H. Park, Soft set theory applied to ideals in $d$-algebras, Comput. Math. Appl. 57 (2009) 367–378.
https://doi.org/10.1016/j.camwa.2008.11.002 - Y.B. Jun, K.J. Lee and J. Zhan, Soft $p$-ideals of soft BCI-algebras, Comput. Math. Appl. 58 (2009) 2060–2068.
https://doi.org/10.1016/j.camwa.2009.07.072 - Y.B. Jun and C.H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci. 178 (2008) 2466–2475.
https://doi.org/10.1016/j.ins.2008.01.017 - M.A. Kazim and M. Naseeruddin, On almost semigroups, Aligarh Bull. Math. 2 (1972) 1–7.
- A. Khan, T. Asif and Y.B. Jun, Double-framed soft ordered semigroups, submitted.
- A. Khan, M. Izhar and M.M. Khalaf, Double framed soft LA-semigroups, J. Intell. Fuzzy Sys. 33 (2017) 3339–3353.
https://doi.org/10.1016/j.ins.2008.01.017 - A. Khan, M. Izhar and A.S. Sezer, Characterizations of intra-regular Abel-Grassmann's groupoids using Double Framed Soft Ideals, Int. J. Anal. Appl. 15 (2017) 62–74.
- A. Khan and M. Sarwar, Uni-soft Bi-ideals and Uni-soft interior ideals of AG-groupoids, Math. Sci. Letters 5 (2016) 271–277.
https://doi.org/10.18576/msl/050308 - A. Khan, M. Izhar and K. Hila, On algebraic properties of DFS sets and its application in decision making problems, J. Intell. Fuzzy Sys. 36 (2019) 6265–6281.
https://doi.org/10.3233/JIFS-182572 - M. Khan, F. Smarandache and S. Anis, Theory of Abel Grassmann's Groupoids, ISBN 978-1-59973-347-0 (Educational Publisher Columbus, 2015).
- M. Khan, F. Smarandache and T. Aziz, Fuzzy Abel Grassmann's Groupoids, ISBN 978-1-59973-340-1 (Educational Publisher Columbus, 2015).
- M. Khan and T. Asif, Characterizations of intra-regular left almost semigroups by their fuzzy ideals, J. Math. Research 2 (2010) 87–96.
https://doi.org/10.5539/jmr.v2n3p87 - D.V. Kovkov, V.M. Kolbanov and D.A. Molodtsov, Soft sets theory based optimization, J. Comput. Syst. Sci. Int. 46 (6) (2007) 872–880.
https://doi.org/10.1134/S1064230707060032 - P.K. Maji, R. Biswas and A.R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077–1083.
https://doi.org/10.1016/S0898-1221(02)00216-X - P.K. Maji, R. Biswas and A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555–562.
https://doi.org/10.1016/S0898-1221(03)00016-6 - D. Molodtsov, Soft set theory – first results, Comput. Math. Appl. 37 (1999) 19–31.
https://doi.org/10.1016/S0898-1221(99)00056-5 - Q. Mushtaq and S.M. Yusuf, On LA-semigroups, Aligarh Bull. Math. 8 (1978) 65–70.
- Q. Mushtaq and M. Khan, Ideals in left almost semigroups, arXiv:0904.1635v1 [math.GR] (2009) 6 pages.
- M. Naseeruddin, Some Studies on Almost Semigroups and Flocks, PhD Thesis (The Aligarh Muslim University India, 1970).
- P.V. Protic and N. Stevanovic, On Abel-Grassmann's groupoids $($review), in: Proceeding of Mathematics Conference in Pristina (1999) 31–38.
- A.R. Roy and P.K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math. 203 (2007) 412–418.
https://doi.org/10.1016/j.cam.2006.04.008 - A.S. Sezer, A new approach to LA-semigroup theory via the soft sets, J. Intell. Fuzzy Syst. 26 (2014) 2483–2495.
https://doi.org/10.3233/IFS-130918 - A.S. Sezer, Certain characterizations of LA semigroups by soft sets, J. Intell. Fuzzy Syst. 27 (2014) 1035–1046.
https://doi.org/10.3233/IFS-131064 - F. Yousafzai, A. Khan, V. Amjad and A. Zeb, On fuzzy fully regular AG-groupoids, J. Intell. Fuzzy Syst. 26 (2014) 2973–2982.
https://doi.org/10.3233/IFS-130963 - J. Zhan, W.A. Dudek and J. Neggers, A new soft union set: characterizations of hemirings, Int. J. Mach. Learn. & Cyber.
https://doi.org/10.1007/s13042-015-0343-8 - X. Ma and J. Zhan, Applications of a new soft set to $h$-hemiregular hemirings via $(M,N)$-SI-$h$-ideals, J. Intell. Fuzzy Syst. 26 (2014) 2515–2525.
https://doi.org/10.3233/IFS-130922
Close