DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

B.B. Koguep Njionou

Blaise B. Koguep Njionou

Department of Mathematics and Computer Science
Faculty of Science, University of Dschang
P.O. Box 67, Dschang, Cameroon

email: koguep@yahoo.com

F. Tchoua Yinga

Fabrice Tchoua Yinga

Department of Mathematics and Computer Science
Faculty of Science, University of Dschang
P.O. Box 67, Dschang, Cameroon

email: tchoufab@gmail.com

E.R. Temgoua Alomo

Etienne R. Temgoua Alomo

Department of Mathematics
École Normale Supérieure de Yaoundé, University of Yaoundé 1
P.O. Box 47, Yaoundé, Cameroon

email: retemgoua@yahoo.fr

Title:

$n$-fold fantastic and $n$-fold involutive ideals in bounded commutative residuated lattices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 363-381

Received: 2020-10-30 , Revised: 2021-05-10 , Accepted: 2022-05-31 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1396

Abstract:

In this paper, we introduce the concepts of $n$-fold obstinate ideals, $n$-fold normal ideals, $n$-fold fantastic ideals and $n$-fold involutive ideals in residuated lattices, state and prove some of their properties. Several characterizations of these notions are derived and the relations between those notions are investigated. Also, we construct the correspondence between the notions of $n$-fold ideal and $n$-fold filter in residuated lattices.

Keywords:

residuated lattice, ideal, $n$-fold ideal, $n$-fold filter

References:

  1. A. Ahadpanah and L. Torkzadeh, Normal filter in residuated lattices, Le Matematiche 70 (2015) 81–92.
    https://doi.org/10.4418/2015.70.1.6
  2. R.A. Borzooei and A. Paad, Integral filters and integral BL-algebras, Italian J. Pure Appl. Math. 30 (2013) 303–316.
  3. R. Cretan and A. Jeflea, On the lattice of congruence filters of a residuated lattice, Annals of University of Craiova, Mathematics and Computer Science Series. 33 (2006) 174–188.
  4. F. Forouzesh, $n$-fold obstinate ideal in MV-algebras, New Math. Natural Comput. 12 (2016) 265–275.
    https://doi.org/10.1142/S1793005716500186
  5. M. Haveshki, B. Saeid and E. Eslami, Some types of filters in BL-algebras, Soft Comput. 10 (2006) 657–664.
    https://doi.org/10.1007/s00500-005-0534-4
  6. M. Haveshki and E. Eslami, n-fold filters in BL-algebra, Math. Log. Quart. 54 (2008) 176–186.
    https://doi.org/10.1002/malq.200710029
  7. M. Haveshki and M. Mohamadhasani, Folding theory applied to Rl-monoid, Annals of the University of Craiova, Mathematics and Computer Science Series 37 (2010) 9–17.
  8. A. Kadji, C. Lele, J.B. Nganou and M. Tonga, Folding theory applied to residuated lattices, Int. J. Math. and Math. Sci. 4 (2014) 1–12.
    https://doi.org/10.1155/2014/428940
  9. M. Kondo and W. Dudek, Filter theory of BL algebras, Soft Computing 12 (2009) 419–423.
    https://doi.org/10.1007/s00500-007-0178-7
  10. C. Lele and S. Moutari, On some computational algorithms for n-fold ideals in BCK-algebras, J. Appl. Math. Comput. 23 (2007) 369–383.
    https://doi.org/10.1007/BF02831984
  11. C. Lele and J.B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems 218 (2013) 103–113.
    https://doi.org/10.1016/j.fss.2012.09.014
  12. C. Lele and J.B. Nganou, Pseudo-addidion and fuzzy ideal in BL-algebras, Annals Math. Inform. 8 (2014) 193–207.
  13. Y. Liu, Y. Qin, X. Qin and Y. Xu, Ideals and fuzzy ideals on residuated lattices, Int. J. Machine Learning and Cybernetics, 8 (2014) 239–253.
    https://doi.org/10.1007/s13042-014-0317-2
  14. S. Motamed and A.B. Saeid, n-fold obstinate filters in BL-algebras, Neural Comput. Appl. 20 (2011) 461–472.
    https://doi.org/10.1007/s00521-011-0548-z
  15. A. Paad and R.A. Borzooei, Generalization of integral filters in BL-algebras and n-fold integral BL-algebras, Africa Matematika 26 (2015) 1299–1311.
    https://doi.org/10.1007/s13370-014-0275-6
  16. A. Paad, n-Fold integral ideals and n-fold Boolean ideals in BL-algebras, Africa Matematika 28 (2017) 971–984.
    https://doi.org/10.1007/s13370-017-0497-5
  17. A. Paad, Folding theory of implicative and obstinate ideals in BL-algebras, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 255–271.
    https://doi.org/10.7151/dmgaa.1295
  18. A.B. Saeid and S. Motamed, Some results in BL-algebras, Math. Logic Quarterly 55 (2009) 649–658.
    https://doi.org/10.1002/Malq.200910025
  19. Y.F. Tchoua, N.B.B. Koguep, A.E.R. Temgoua and C. Lele, $n$-fold boolean, implicative and integral ideals on bounded commutative residuated lattices, New Math. and Natural Comput. 15 (2019) 427–445.
    https://doi.org/10.1142/S1793005719500248
  20. Y. Yang and X. Xin, On chracterizations of BL-algebras via implicative ideals, Italian J. Pure and Appl. Math. 37 (2017) 493–506.
  21. O. Zahiri and H. Farahani, n-Fold filters of MTL-algebras, Africa Matematika 25 (2014) 1165–1178.
    https://doi.org/10.1007/s13370-013-0184-0

Close