DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

J. Pal

Joydeb Pal

Department of Mathematics
School of Applied Sciences
Kalinga Institute of Industrial Technology (KIIT)
Deemed to be University, Odisha, India

email: joydeb.palfma@kiit.ac.in

S. Bhowmick

Sanjit Bhowmick

Department of Mathematics
National Institute of Technology Durgapur
West Bengal, India

email: sb.17ma1108@phd.nitdgp.ac.in

R. Bandi

Ramakrishna Bandi

Department of Mathematics
Dr. SPM International Institute of Information Technology
Naya Raipur, India

email: ramakrishna@iiitnr.edu.in

S. Bagchi

Satya Bagchi

Department of Mathematics
National Institute of Technology Durgapur
Burdwan, India

email: satya.bagchi@maths.nitdgp.ac.in

Title:

Self-dual cyclic codes over $M_2(\mathbb{Z}_4)$

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 349-362

Received: 2020-10-31 , Revised: 2021-03-24 , Accepted: 2022-05-25 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1395

Abstract:

In this paper, we study the structure of cyclic codes over$M_2(\mathbb{Z}_4)$ (the matrix ring of matrices of order 2 over $\mathbb{Z}_4$), which is perhaps the first time that the ring is considered as a code alphabet. This ring is isomorphic to $\mathbb{Z}_4[w]+U\mathbb{Z}_4[w]$, where $w$ is a root of the irreducible polynomial $x^2+x+1 \in \mathbb{Z}_2[x]$ and $U \cong \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$. In our work, we first discuss the structure of the ring $M_2(\mathbb{Z}_4)$ and then focus on the structure of cyclic codes and self-dual cyclic codes over $M_2(\mathbb{Z}_4)$. Thereafter, we obtain the generators of the cyclic codes and their dual codes. A few non-trivial examples are given at the end of the paper.

Keywords:

codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Gray map, Lee weight, self-dual codes

References:

  1. A. Alahmadi, H. Sboui, P. Sol$\acute{\mathrm{e}}$ and O. Yemen, Cyclic codes over $M_2(\mathbb{F}_2)$, J. Franklin Institute 350 (9) (2013) 2837–2847.
    https://doi.org/10.1016/j.jfranklin.2013.06.023
  2. C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory A 78 (1997) 92–119.
    https://doi.org/10.1006/jcta.1996.2763
  3. M. Greferath and S.E. Schmidt, Linear codes and rings of matrices, Proceedings of AAECC 13, Hawaii, Springer, LNCS 1719 (1999) 160–169.
    https://doi.org/10.1007/3-540-46796-3\_16
  4. A.R. Hammons Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Sol$\acute{\mathrm{e}}$, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40 (1994) 301–319.
    https://doi.org/10.1109/18.312154
  5. R. Luo and U. Parampalli, Cyclic codes over $M_2(\mathbb{F}_2+u\mathbb{F}_2)$, Cryptography and Communications 10 (6) (2018) 1109–1117.
    https://doi.org/10.1007/s12095-017-0266-1
  6. F. Oggier, P. Sol$\acute{\mathrm{e}}$ and J.C. Belfiore, Codes over matrix rings for space-time coded modulations, IEEE Trans. Inform. Theory 58 (2) (2012) 734–746.
    https://doi.org/10.1109/TIT.2011.2173732
  7. J. Pal, S. Bhowmick and S. Bagchi, Cyclic codes over $\mathcal{M}_4(\mathbb{F}_2)$, J. Appl. Math. Comput. 60 (2019) 749–756.
    https://doi.org/10.1007/s12190-018-01235-w
  8. V. Pless, P. Sol$\acute{\mathrm{e}}$ and Z. Qian, Cyclic self-dual $\mathbb{Z}_4$-codes, Finite Fields and Their Appl. 3 (1997) 48–69.
    https://doi.org/10.1006/ffta.1996.0172
  9. V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $\mathbb{Z}_4$, IEEE Trans. Inform. Theory 42 (5) (1996) 1594–1600.
    https://doi.org/10.1109/18.532906
  10. P. Sol$\acute{\mathrm{e}}$, Codes Over Rings (Singapore, World Scientific, 2009).
    https://doi.org/10.1142/7140
  11. R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, 1991).
    https://doi.org/10.1201/9780203755532

Close