DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

L. Oluoch

Lilian Oluoch

Technical University of Kenya
Haile Selassie Avenue, P.O Box 52428 - 00200, Nairobi, Kenya

email: lilianoluoch@tukenya.ac.ke

A. Al-Najafi

Amenah Al-Najafi

University of Szeged, Bolyai Institute
Szeged, Aradi vértanúk tere 1, HUNGARY 6720

email: amenah@math.u-szeged.hu

Title:

Lower bound for the number of 4-element generating sets of direct products of two neighboring partition lattices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 327-338

Received: 2020-12-21 , Revised: 2022-03-04 , Accepted: 2022-05-09 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1393

Abstract:

H. Strietz proved in 1975 that the minimum size of a generating set of the partition lattice $\textrm{Part}(n)$ on the $n$-element set $(n \geq 4)$ equals $4$. This classical result forms the foundation for this study. Strietz's results have been echoed by L. Zádori (1983), who gave a new elegant proof confirming the outcome. Several studies have indeed emerged henceforth concerning four-element generating sets of partition lattices. More recently more studies have presented the approach for the lower bounds on the number $\lambda(n)$ of the four-element generating sets of $\textrm{Part}(n)$ and statistical approach to $\lambda(n)$ for small values of $ n $. Also, G. Czédli and the present author have recently proved that certain direct products of partition lattices are also 4-generated. In a recent paper, G. Czédli has shown that this result has connection with information theory. On this basis, here we give a lower bound on the number $\nu(n) $ of 4-element generating sets of the direct product $\textrm{Part}(n)× \textrm{Part}(n+1)$ for $n\geq 7 $ using the results from previous studies. For $n=1,\dots,5$, we use a computer-aided approach; it gives exact values for $n=1,2,3,4$ but we need a statistical method for $n=5$.

Keywords:

partition lattice, four-element generating set, sublattice, statistics, computer program, direct product of lattices, generating, partition lattices

References:

  1. G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. (Szeged) 62 (1996) 47–69.
  2. G. Czédli, Lattice generation of small equivalences of a countable set, Order 13 (1996) 11–16.
    https://doi.org/10.1007/BF00383964
  3. G. Czédli, (1+1+2)-generated equivalence lattices, J. Algebra 221 (1999) 439–462.
    https://doi.org/10.1006/jabr.1999.8003
  4. G. Czédli and L. Oluoch, Four-element generating sets of partition lattices and their direct products, Acta Sci. Math. (Szeged) 86 (2020) 405–448.
    https://doi.org/10.14232/actasm-020-126-7
  5. G. Czédli, Four-generated direct powers of partition lattices and authentication, Publicationes Mathematicae (Debrecen) (to appear).
  6. J.L. Hodges Jr. and E.L. Lehmann, Basic concepts of probability and statistics (Society for Industrial and Applied Mathematics, 2005).
    https://doi.org/10.1137/1.9780898719123
  7. M. Lefebvre, Applied probability and statistics (Springer Science & Business Media, 2007).
    https://doi.org/10.1007/0-387-28505-9
  8. W. Mendenhall, R.J. Beaver and B.M. Beaver, Introduction to probability and statistics (Cengage Learning, 2012).
  9. H. Strietz, Finite partition lattices are four-generated, in: Proc. Lattice Theory Conf., Gudrun Kalmbach (Ed(s)), (Universität Ulm 1975) 257–259.
  10. H. Strietz, Über Erzeugendenmengen endlicher Partitionenverbände, Studia Sci. Math. Hungar. 12 (1977) 1–17.
  11. L. Zádori, Generation of finite partition lattices, in: Lectures in universal algebra (Szeged, 1983), L. Szabó and Á. Szendrei (Ed(s)), (Math. Soc. János Bolyai and North-Holland 1986) 573–586.
    https://doi.org/10.1016/b978-0-444-87759-8.50038-9

Close