DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

J. Amreen

Javeria Amreen

Department of Mathematics
CHRIST (Deemed to be University)
Bangalore-560029, India

email: javeriaamreen@res.christuniversity.in

S. Naduvath

Sudev Naduvath

Department of Mathematics
CHRIST (Deemed to be University)
Bangalore-560029, India

email: sudev.nk@christuniversity.in

Title:

On the non-inverse graph of a group

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 315-325

Received: 2021-04-11 , Revised: 2021-09-27 , Accepted: 2022-04-22 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1392

Abstract:

Let $(G,\ast)$ be a finite group and $S=\{u \in G | u \neq u^{-1} \}$, then the inverse graph is defined as a graph whose vertices coincide with $G$ such that two distinct vertices $u$ and $v$ are adjacent if and only if either $u \ast v \in S$ or $v \ast u \in S$. In this paper, we introduce a modified version of the inverse graph, called $i^\ast$-graph associated with a group $G$. The $i^\ast$-graph is a simple graph with vertex set consisting of elements of $G$ and two vertices $x, y \in Γ$ are adjacent if $x$ and $y$ are not inverses of each other. We study certain properties and characteristics of this graph. Some parameters of the $i^\ast$-graph are also determined.

Keywords:

inverse graph, non-inverse graph

References:

  1. M.R. Alfuraidan and Y.F. Zakariya, Inverse graphs associated with finite groups, Electron. J. Graph Theory Appl. 5 (1) (2017).
    https://doi.org/10.5614/ejgta.2017.5.1.14
  2. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999) 434–447.
    https://doi.org/10.1006/jabr.1998.7840
  3. P.J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (13) (2011) 1220–1222.
    https://doi.org/10.1016/j.disc.2010.02.011
  4. E. Carnia, M. Suyudi, I. Aisah and A.K. Supriatna, A review on eigenvalues of adjacency matrix of graph with cliques, (2017) 040001.
  5. I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (17) (2009) 5381–5392.
    https://doi.org/10.1016/j.disc.2008.11.034
  6. P.M. Cohn, Basic Algebra (Springer, New Delhi, 2003).
  7. F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (1) (2005) 190–198.
    https://doi.org/https://doi.org/10.1016/j.disc.2008.11.034
  8. T.W. Hungerford, Algebra (Springer, New York, 2008).
  9. B.L. Johnston and F. Richman, Numbers and Symmetry: An Introduction to Algebra (CRC Press, New York, 1997).
  10. J.V. Kureethara, Hamiltonian cycle in complete multipartite graphs, Annal. Pure Appl. Math. 13 (2) (2017) 223–228.
    https://doi.org/10.22457/apam.v13n2a8
  11. P. Nasehpour, A generalization of zero-divisor graphs, 2019. arXiv preprint arXiv:1911.06244
  12. E.B. Vinberg, A Course in Algebra (Universities Press, New Delhi, 2012).
  13. E.W. Weisstein, Clique Number, From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/CliqueNumber.html
  14. D.B. West, Introduction to Graph Theory (Pearson, New Jersey, 2001).

Close