Article in volume
Authors:
Title:
On Sheffer stroke BE-algebras
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 293-314
Received: 2020-11-21 , Revised: 2022-03-29 , Accepted: 2022-04-13 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1391
Abstract:
In this paper we introduce Sheffer stroke BE-algebras (briefly, SBE-algebras)
and investigate a relationship between SBE-algebras and BE- algebras. By
presenting a SBE-filter, an upper set and a SBE-subalgebra on a SBE-algebra,
it is shown that any SBE-filter of a SBE-algebra is a SBE-subalgebra but the
converse of this statement is not true. Besides we construct quotient
SBE-algebras via a congruence relation defined by a special SBE-filter.
We discuss SBE-homomorphisms and their properties between SBE-algebras.
Finally, a relation between Sheffer stroke Hilbert algebras and SBE-algebras
is established.
Keywords:
Sheffer stroke, SBE-algebra, congruence, SBE-homomorphism
References:
- J.C. Abbott, Implicational algebras, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie 11(59) (1967) 3–23.
- S.S. Ahn and K.S. So, On Ideals and Upper Sets BE-algebra, Sci. Math. Japon. 68(2) (2008) 29–285.
https://doi.org/10.32219/ISMS.68.2\_279 - S.S. Ahn and K.S. So, On Generalized upper sets BE-algebra, Bull. Korean Math. Soc. 46(2) (2009) 281–287.
https://doi.org/10.4134/BKMS.2009.46.2.281 - I. Chajda, R. Halaš and H. Länger, Operations and structures derived from non-associative MV-algebras, Soft Computing 23(12) (2019) 3935–3944.
https://doi.org/10.1007/s00500-018-3309-4 - I. Chajda, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44 (2005) 19–23.
- H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Jpn. online e-2006 (2006) 1299–1302.
- W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, J. Automated Reasoning 29 (2002) 1–16.
https://doi.org/10.1023/A:1020542009983 - T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer stroke operation and Hilbert algebras, Categories and General Algebraic Structures with Applications 14 (2021) 245–268.
https://doi.org/10.29252/cgasa.14.1.245 - T. Oner, T. Katican and A. Borumand Saeid, (Fuzzy) filters of Sheffer stroke BL-algebras, Kragujevac J. Math. 47 (2023) 39–55.
- T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta 29 (2021) 143–164.
https://doi.org/10.2478/auom-2021-0010 - T. Oner, T. Katican and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert algebras, J. Intelligent and Fuzzy Syst. 40 (2021) 759–772.
https://doi.org/10.3233/JIFS-200760 - T. Oner, T. Katican and A. Borumand Saeid, On Sheffer stroke UP-algebras, Discuss. Math. Gen. Alg. and Appl. 41 (2021) 381–394.
- A. Rezaei, A. Borumand Saeid and R.A. Borzooei, Relation between Hilbert Algebras and BE-algebras, Application and Applied Mathematics: An International Journal 8 (2013) 573–584.
https://doi.org/10.7151/dmgaa.1285 - A. Rezaei and A. Borumand Saeid, Some Results in BE-algebras, Analele Universităţii Oradea Fasc. Matematica XIX(1) (2012) 33–44.
- A. Rezaei and A. Borumand Saeid, Relation between BE-algebras and g-Hilbert algebras, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 33–45.
https://doi.org/10.7151/dmgaa.1285 - A. Rezaei and A. Borumand Saeid, Relation between dual S-algebras and BE-algebras, Le Mathematiche LXX(I) (2015) 71–79.
https://doi.org/10.4418/2015.70.1.5 - A. Rezaei and A. Borumand Saeid, Commutative Ideals in BE-algebras, Kyungpook Math. J. 52(52) (2012) 483–494.
https://doi.org/10.5666/KMJ.2012.52.4.483 - H. P. Sankappanavar and S. Burris, A course in universal algebra, Graduate Texts Math. 78 (1981).
- H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Trans. Amer. Math. Soc. 14 (1913) 481-488.
https://doi.org/10.2307/1988701 - A. Walendziak, On Commutative BE-algebras, Sci. Math. Japon. 69 (2008) 585–588.
- A. Najafi and A. Borumand Saeid, Fuzzy points in BE-algebras, J. Mahani Math. Res. Center 8(1.2) (2019) 69–80.
https://doi.org/10.22103/JMMRC.2019.12457.1065
Close