DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

T. Oner

Tahsin Oner

Department of Mathematics
Faculty of Science, Ege University
Izmir, Turkey

email: tahsin.oner@ege.edu.tr

T. Katican

Tugce Katican

Department of Mathematics
Faculty of Arts and Sciences
Izmir University of Economics
Izmir, Turkey

email: tugcektcn@gmail.com

A. Borumand Saeid

Arsham Borumand Saeid

Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran

email: arsham@uk.ac.ir

Title:

On Sheffer stroke BE-algebras

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 293-314

Received: 2020-11-21 , Revised: 2022-03-29 , Accepted: 2022-04-13 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1391

Abstract:

In this paper we introduce Sheffer stroke BE-algebras (briefly, SBE-algebras) and investigate a relationship between SBE-algebras and BE- algebras. By presenting a SBE-filter, an upper set and a SBE-subalgebra on a SBE-algebra, it is shown that any SBE-filter of a SBE-algebra is a SBE-subalgebra but the converse of this statement is not true. Besides we construct quotient SBE-algebras via a congruence relation defined by a special SBE-filter. We discuss SBE-homomorphisms and their properties between SBE-algebras. Finally, a relation between Sheffer stroke Hilbert algebras and SBE-algebras is established.

Keywords:

Sheffer stroke, SBE-algebra, congruence, SBE-homomorphism

References:

  1. J.C. Abbott, Implicational algebras, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie 11(59) (1967) 3–23.
  2. S.S. Ahn and K.S. So, On Ideals and Upper Sets BE-algebra, Sci. Math. Japon. 68(2) (2008) 29–285.
    https://doi.org/10.32219/ISMS.68.2\_279
  3. S.S. Ahn and K.S. So, On Generalized upper sets BE-algebra, Bull. Korean Math. Soc. 46(2) (2009) 281–287.
    https://doi.org/10.4134/BKMS.2009.46.2.281
  4. I. Chajda, R. Halaš and H. Länger, Operations and structures derived from non-associative MV-algebras, Soft Computing 23(12) (2019) 3935–3944.
    https://doi.org/10.1007/s00500-018-3309-4
  5. I. Chajda, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44 (2005) 19–23.
  6. H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Jpn. online e-2006 (2006) 1299–1302.
  7. W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, J. Automated Reasoning 29 (2002) 1–16.
    https://doi.org/10.1023/A:1020542009983
  8. T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer stroke operation and Hilbert algebras, Categories and General Algebraic Structures with Applications 14 (2021) 245–268.
    https://doi.org/10.29252/cgasa.14.1.245
  9. T. Oner, T. Katican and A. Borumand Saeid, (Fuzzy) filters of Sheffer stroke BL-algebras, Kragujevac J. Math. 47 (2023) 39–55.
  10. T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta 29 (2021) 143–164.
    https://doi.org/10.2478/auom-2021-0010
  11. T. Oner, T. Katican and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert algebras, J. Intelligent and Fuzzy Syst. 40 (2021) 759–772.
    https://doi.org/10.3233/JIFS-200760
  12. T. Oner, T. Katican and A. Borumand Saeid, On Sheffer stroke UP-algebras, Discuss. Math. Gen. Alg. and Appl. 41 (2021) 381–394.
  13. A. Rezaei, A. Borumand Saeid and R.A. Borzooei, Relation between Hilbert Algebras and BE-algebras, Application and Applied Mathematics: An International Journal 8 (2013) 573–584.
    https://doi.org/10.7151/dmgaa.1285
  14. A. Rezaei and A. Borumand Saeid, Some Results in BE-algebras, Analele Universităţii Oradea Fasc. Matematica XIX(1) (2012) 33–44.
  15. A. Rezaei and A. Borumand Saeid, Relation between BE-algebras and g-Hilbert algebras, Discuss. Math. Gen. Alg. and Appl. 38 (2018) 33–45.
    https://doi.org/10.7151/dmgaa.1285
  16. A. Rezaei and A. Borumand Saeid, Relation between dual S-algebras and BE-algebras, Le Mathematiche LXX(I) (2015) 71–79.
    https://doi.org/10.4418/2015.70.1.5
  17. A. Rezaei and A. Borumand Saeid, Commutative Ideals in BE-algebras, Kyungpook Math. J. 52(52) (2012) 483–494.
    https://doi.org/10.5666/KMJ.2012.52.4.483
  18. H. P. Sankappanavar and S. Burris, A course in universal algebra, Graduate Texts Math. 78 (1981).
  19. H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Trans. Amer. Math. Soc. 14 (1913) 481-488.
    https://doi.org/10.2307/1988701
  20. A. Walendziak, On Commutative BE-algebras, Sci. Math. Japon. 69 (2008) 585–588.
  21. A. Najafi and A. Borumand Saeid, Fuzzy points in BE-algebras, J. Mahani Math. Res. Center 8(1.2) (2019) 69–80.
    https://doi.org/10.22103/JMMRC.2019.12457.1065

Close